DOI QR코드

DOI QR Code

Therapeutic implications of microRNAs in pulmonary arterial hypertension

  • Lee, Aram (Department of Life Systems, Sookmyung Women's University) ;
  • McLean, Danielle (Cardiovascular Research Institute, University of Vermont) ;
  • Choi, Jihea (Department of Life Systems, Sookmyung Women's University) ;
  • Kang, Hyesoo (Department of Life Systems, Sookmyung Women's University) ;
  • Chang, Woochul (Department of Biology Education, College of Education, Pusan National University) ;
  • Kim, Jongmin (Department of Life Systems, Sookmyung Women's University)
  • 투고 : 2014.04.14
  • 발행 : 2014.06.30

초록

microRNAs (miRNAs) are a class of small, non-coding RNAs that play critical posttranscriptional regulatory roles typically through targeting of the 3'-untranslated region of messenger RNA (mRNA). Mature miRNAs are known to be involved in global cellular processes, such as differentiation, proliferation, apoptosis, and organogenesis, due to their capacity to target multiple mRNAs. Thus, imbalances in the expression and/or activity of miRNAs are involved in the pathogenesis of numerous diseases, including pulmonary arterial hypertension (PAH). PAH is a progressive disease characterized by vascular remodeling due to excessive proliferation of pulmonary artery endothelial cells (PAECs) and pulmonary artery smooth muscle cells (PASMCs). Recently, studies have evaluated the roles of miRNAs involved in the pathogenesis of PAH in these pulmonary vascular cells. This review provides an overview of recent discoveries on the role of miRNAs in the pathogenesis of PAH and discusses the potential for miRNAs as therapeutic targets and biomarkers of PAH.

키워드

참고문헌

  1. Sessa, R. and Hata, A. (2013) Role of microRNAs in lung development and pulmonary diseases. Pulm. Circ. 3, 315-328. https://doi.org/10.4103/2045-8932.114758
  2. Humbert, M., Sitbon, O., Chaouat, A., Bertocchi, M., Habib, G., Gressin, V., Yaici, A., Weitzenblum, E., Cordier, J. F., Chabot, F., Dromer, C., Pison, C., Reynaud-Gaubert, M., Haloun, A., Laurent, M., Hachulla, E., Cottin, V., Degano, B., Jais, X., Montani, D., Souza, R. and Simonneau, G. (2010) Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in the modern management era. Circulation 122, 156-163. https://doi.org/10.1161/CIRCULATIONAHA.109.911818
  3. Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297. https://doi.org/10.1016/S0092-8674(04)00045-5
  4. Friedman, R. C., Farh, K. K., Burge, C. B. and Bartel, D. P. (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92-105.
  5. Hu, Z. H. (2009) Insight into microRNA regulation by analyzing the characteristics of their targets in humans. Bmc Genomics 10, 594-610. https://doi.org/10.1186/1471-2164-10-594
  6. Courboulin, A., Paulin, R., Giguere, N. J., Saksouk, N., Perreault, T., Meloche, J., Paquet, E. R., Biardel, S., Provencher, S., Cote, J., Simard, M. J. and Bonnet, S. (2011) Role for miR-204 in human pulmonary arterial hypertension. J. Exp. Med. 208, 535-548. https://doi.org/10.1084/jem.20101812
  7. Kim, J., Kang, Y. J., Kojima, Y., Lighthouse, J. K., Hu, X. Y., Aldred, M. A., McLean, D. L., Park, H., Comhair, S. A., Greif, D. M., Erzurum, S. C. and Chun, H. J. (2013) An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertension. Nat. Med. 19, 74-82.
  8. Altuvia, Y., Landgraf, P., Lithwick, G., Elefant, N., Pfeffer, S., Aravin, A., Brownstein, M. J., Tuschl, T. and Margalit, H. (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res. 33, 2697-2706. https://doi.org/10.1093/nar/gki567
  9. Lee, Y., Kim, M., Han, J. J., Yeom, K. H., Lee, S., Baek, S. H. and Kim, V. N. (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051-4060. https://doi.org/10.1038/sj.emboj.7600385
  10. Borchert, G. M., Lanier, W. and Davidson, B. L. (2006) RNA polymerase III transcribes human microRNAs. Nat. Struct. Mol. Biol. 13, 1097-1101. https://doi.org/10.1038/nsmb1167
  11. Kim, V. N. (2005) Small RNAs: Classification, biogenesis, and function. Mol. Cells 19, 1-15. https://doi.org/10.1016/j.molcel.2005.05.026
  12. Kim, Y. and Kim, V. N. (2012) MicroRNA Factory: RISC assembly from precursor MicroRNAs. Mol. Cell 46, 384-386. https://doi.org/10.1016/j.molcel.2012.05.012
  13. Kiss, T. (2002) Small nucleolar RNAs: An abundant group of noncoding RNAs with diverse cellular functions. Cell 109, 145-148. https://doi.org/10.1016/S0092-8674(02)00718-3
  14. Caruso, P., MacLean, M. R., Khanin, R., McClure, J., Soon, E., Southgate, M., MacDonald, R. A., Greig, J. A., Robertson, K. E., Masson, R., Denby, L., Dempsie, Y., Long, L., Morrell, N. W. and Baker, A. H. (2010) Dynamic changes in lung MicroRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline. Arterioscl. Throm. Vas. 30, 716-U182. https://doi.org/10.1161/ATVBAHA.109.202028
  15. Chandra, S. M., Razavi, H., Kim, J., Agrawal, R., Kundu, R. K., Perez, V. D., Zamanian, R. T., Quertermous, T. and Chun, H. J. (2011) Disruption of the Apelin-APJ system worsens hypoxia-induced pulmonary hypertension. Arterioscl. Throm. Vas. 31, 814-U212. https://doi.org/10.1161/ATVBAHA.110.219980
  16. Kim, J. (2014) Apelin-APJ Signaling: a potential therapeutic target for pulmonary arterial hypertension. Mol. Cells. 37, 196-201. https://doi.org/10.14348/molcells.2014.2308
  17. Hogan, B. L. (1996) Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 10, 1580-1594. https://doi.org/10.1101/gad.10.13.1580
  18. Long, L., Crosby, A., Yang, X., Southwood, M., Upton, P. D., Kim, D. K. and Morrell, N. W. (2009) Altered bone morphogenetic protein and transforming growth factor-beta signaling in rat models of pulmonary hypertension: potential for activin receptor-like kinase-5 inhibition in prevention and progression of disease. Circulation 119, 566-576. https://doi.org/10.1161/CIRCULATIONAHA.108.821504
  19. Machado, R. D., Aldred, M. A., James, V., Harrison, R. E., Patel, B., Schwalbe, E. C., Gruenig, E., Janssen, B., Koehler, R., Seeger, W., Eickelberg, O., Olschewski, H., Elliott, C. G., Glissmeyer, E., Carlquist, J., Kim, M., Torbicki, A., Fijalkowska, A., Szewczyk, G., Parma, J., Abramowicz, M. J., Galie, N., Morisaki, H., Kyotani, S., Nakanishi, N., Morisaki, T., Humbert, M., Simonneau, G., Sitbon, O., Soubrier, F., Coulet, F., Morrell, N. W. and Trembath, R. C. (2006) Mutations of the TGF-beta type II receptor BMPR2 in pulmonary arterial hypertension. Hum. Mutat. 27, 121-132. https://doi.org/10.1002/humu.20285
  20. Brock, M., Trenkmann, M., Gay, R. E., Michel, B. A., Gay, S., Fischler, M., Ulrich, S., Speich, R. and Huber, L. C. (2009) Interleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3-microRNA cluster 17/92 pathway. Circ. Res. 104, 1184-1191. https://doi.org/10.1161/CIRCRESAHA.109.197491
  21. Pullamsetti, S. S., Doebele, C., Fischer, A., Savai, R., Kojonazarov, B., Dahal, B. K., Ghofrani, H. A., Weissmann, N., Grimminger, F., Bonauer, A., Seeger, W., Zeiher, A. M., Dimmeler, S. and Schermuly, R. T. (2012) Inhibition of microRNA-17 improves lung and heart function in experimental pulmonary hypertension. Am. J. Respir. Crit. Care Med. 185, 409-419. https://doi.org/10.1164/rccm.201106-1093OC
  22. Brock, M., Samillan, V. J., Trenkmann, M., Schwarzwald, C., Ulrich, S., Gay, R. E., Gassmann, M., Ostergaard, L., Gay, S., Speich, R. and Huber, L. C. (2012) AntagomiR directed against miR-20a restores functional BMPR2 signalling and prevents vascular remodelling in hypoxia-induced pulmonary hypertension. Eur. Heart J. doi:10.1093/eurheartj/ehs060
  23. Shintani, M., Yagi, H., Nakayama, T., Saji, T. and Matsuoka, R. (2009) A new nonsense mutation of SMAD8 associated with pulmonary arterial hypertension. J. Med. Genet. 46, 331-337. https://doi.org/10.1136/jmg.2008.062703
  24. Drake, K. M., Zygmunt, D., Mavrakis, L., Harbor, P., Wang, L., Comhair, S. A., Erzurum, S. C. and Aldred, M. A. (2011) Altered MicroRNA processing in heritable pulmonary arterial hypertension: an important role for Smad-8. Am. J. Respir. Crit. Care Med. 184, 1400-1408. https://doi.org/10.1164/rccm.201106-1130OC
  25. Zaidi, S. H., You, X. M., Ciura, S., Husain, M. and Rabinovitch, M. (2002) Overexpression of the serine elastase inhibitor elafin protects transgenic mice from hypoxic pulmonary hypertension. Circulation 105, 516-521. https://doi.org/10.1161/hc0402.102866
  26. Takahashi, H., Goto, N., Kojima, Y., Tsuda, Y., Morio, Y., Muramatsu, M. and Fukuchi, Y. (2006) Downregulation of type II bone morphogenetic protein receptor in hypoxic pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L450-458. https://doi.org/10.1152/ajplung.00206.2005
  27. Mizuno, S., Bogaard, H. J., Kraskauskas, D., Alhussaini, A., Gomez-Arroyo, J., Voelkel, N. F. and Ishizaki, T. (2011) p53 Gene deficiency promotes hypoxia-induced pulmonary hypertension and vascular remodeling in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 300, L753-761. https://doi.org/10.1152/ajplung.00286.2010
  28. Caruso, P., Dempsie, Y., Stevens, H. C., McDonald, R. A., Long, L., Lu, R., White, K., Mair, K. M., McClure, J. D., Southwood, M., Upton, P., Xin, M., van Rooij, E., Olson, E. N., Morrell, N. W., MacLean, M. R. and Baker, A. H. (2012) A role for miR-145 in pulmonary arterial hypertension: evidence from mouse models and patient samples. Circl. Res. 111, 290-300. https://doi.org/10.1161/CIRCRESAHA.112.267591
  29. Li, S. S., Ran, Y. J., Zhang, D. D., Li, S. Z. and Zhu, D. (2014) MicroRNA-190 Regulates Hypoxic Pulmonary Vasoconstriction by Targeting a Voltage-Gated K Channel in Arterial Smooth Muscle Cells. J. Cell. Biochem. 115, 1196-1205. https://doi.org/10.1002/jcb.24771
  30. Gou, D., Ramchandran, R., Peng, X., Yao, L., Kang, K., Sarkar, J., Wang, Z., Zhou, G. and Raj, J. U. (2012) miR-210 has an antiapoptotic effect in pulmonary artery smooth muscle cells during hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 303, L682-691. https://doi.org/10.1152/ajplung.00344.2011
  31. Li, S., Ran, Y., Zhang, D., Chen, J., Li, S. and Zhu, D. (2013) MicroRNA-138 plays a role in hypoxic pulmonary vascular remodelling by targeting Mst1. Biochem. J. 452, 281-291. https://doi.org/10.1042/BJ20120680
  32. Sarkar, J., Gou, D., Turaka, P., Viktorova, E., Ramchandran, R. and Raj, J. U. (2010) MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. Am. J. Physiol. Lung Cell. Mol. Physiol. 299, L861-871. https://doi.org/10.1152/ajplung.00201.2010
  33. Yang, S. Z., Banerjee, S., de Freitas, A., Cui, H. C., Xie, N., Abraham, E. and Liu, G. (2012) miR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling. Am. J. Physiol-Lung C. 302, L521-L529. https://doi.org/10.1152/ajplung.00316.2011
  34. Parikh, V. N., Jin, R. C., Rabello, S., Gulbahce, N., White, K., Hale, A., Cottrill, K. A., Shaik, R. S., Waxman, A. B., Zhang, Y. Y., Maron, B. A., Hartner, J. C., Fujiwara, Y., Orkin, S. H., Haley, K. J., Barabasi, A. L., Loscalzo, J. and Chan, S. Y. (2012) MicroRNA-21 integrates pathogenic signaling to control pulmonary hypertension results of a network bioinformatics approach. Circulation 125, 1520-U1216. https://doi.org/10.1161/CIRCULATIONAHA.111.060269
  35. Guo, L., Qiu, Z. P., Wei, L. P., Yu, X. F., Gao, X., Jiang, S. L., Tian, H., Jiang, C. and Zhu, D. L. (2012) The MicroRNA-328 regulates hypoxic pulmonary hypertension by targeting at insulin growth factor 1 receptor and L-Type calcium channel-alpha 1C. Hypertension 59, 1006-1013. https://doi.org/10.1161/HYPERTENSIONAHA.111.185413
  36. Chen, X. Y., Yan, Q., Li, S. D., Zhou, L., Yang, H. J., Yang, Y. X., Liu, X. L. and Wan, X. P. (2012) Expression of the tumor suppressor miR-206 is associated with cellular proliferative inhibition and impairs invasion in ER alpha-positive endometrioid adenocarcinoma. Cancer Lett. 314, 41-53. https://doi.org/10.1016/j.canlet.2011.09.014
  37. Kondo, N., Toyama, T., Sugiura, H., Fujii, Y. and Yamashita, H. (2008) miR-206 expression is down-regulated in estrogen receptor alpha-positive human breast cancer. Cancer Res. 68, 5004-5008. https://doi.org/10.1158/0008-5472.CAN-08-0180
  38. Jalali, S., Ramanathan, G. K., Parthasarathy, P. T., Aljubran, S., Galam, L., Yunus, A., Garcia, S., Cox, R. R., Lockey, R. F. and Kolliputi, N. (2012) Mir-206 Regulates pulmonary artery smooth muscle cell proliferation and differentiation. Plos One 7, e46808. https://doi.org/10.1371/journal.pone.0046808
  39. Li, X. D., Zhang, X. X., Leathers, R., Makino, A., Huang, C. Q., Parsa, P., Macias, J., Yuan, J. X. J., Jamieson, S. W. and Thistlethwaite, P. A. (2009) Notch3 signaling promotes the development of pulmonary arterial hypertension. Nat. Med. 15, 1289-U1289. https://doi.org/10.1038/nm.2021
  40. Kang, K., Peng, X., Zhang, X. Y., Wang, Y. N., Zhang, L. S., Gao, L., Weng, T. T., Zhang, H. H., Ramchandran, R., Raj, J. U., Gou, D. M. and Liu, L. (2013) MicroRNA-124 suppresses the transactivation of nuclear factor of activated t cells by targeting multiple genes and inhibits the proliferation of pulmonary artery smooth muscle cells. J. Biol. Chem. 288, 25414-25427. https://doi.org/10.1074/jbc.M113.460287
  41. Wang, D., Zhang, H., Li, M., Frid, M. G., Flockton, A. R., McKeon, B. A., Yeager, M. E., Fini, M. A., Morrell, N. W., Pullamsetti, S. S., Velegala, S., Seeger, W., McKinsey, T. A., Sucharov, C. C. and Stenmark, K. R. (2014) MicroRNA-124 controls the proliferative, migratory, and inflammatory phenotype of pulmonary vascular fibroblasts. Circ. Res. 114, 67-78. https://doi.org/10.1161/CIRCRESAHA.114.301633
  42. Creemers, E. E., Tijsen, A. J. and Pinto, Y. M. (2012) Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ. Res. 110, 483-495. https://doi.org/10.1161/CIRCRESAHA.111.247452
  43. Hergenreider, E., Heydt, S., Treguer, K., Boettger, T., Horrevoets, A. J., Zeiher, A. M., Scheffer, M. P., Frangakis, A. S., Yin, X., Mayr, M., Braun, T., Urbich, C., Boon, R. A. and Dimmeler, S. (2012) Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat. Cell Biol. 14, 249-256. https://doi.org/10.1038/ncb2441
  44. Turchinovich, A., Weiz, L., Langheinz, A. and Burwinkel, B. (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res. 39, 7223-7233. https://doi.org/10.1093/nar/gkr254
  45. Vickers, K. C., Palmisano, B. T., Shoucri, B. M., Shamburek, R. D. and Remaley, A. T. (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 13, 423-433. https://doi.org/10.1038/ncb2210
  46. Rhodes, C. J., Wharton, J., Boon, R. A., Roexe, T., Tsang, H., Wojciak-Stothard, B., Chakrabarti, A., Howard, L. S., Gibbs, J. S., Lawrie, A., Condliffe, R., Elliot, C. A., Kiely, D. G., Huson, L., Ghofrani, H. A., Tiede, H., Schermuly, R., Zeiher, A. M., Dimmeler, S. and Wilkins, M. R. (2013) Reduced microRNA-150 is associated with poor survival in pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 187, 294-302. https://doi.org/10.1164/rccm.201205-0839OC
  47. Wei, C., Henderson, H., Spradley, C., Li, L., Kim, I. K., Kumar, S., Hong, N., Arroliga, A. C. and Gupta, S. (2013) Circulating miRNAs as potential marker for pulmonary hypertension. Plos One 8, e64396. https://doi.org/10.1371/journal.pone.0064396

피인용 문헌

  1. Oxidative and nitrosative signalling in pulmonary arterial hypertension — Implications for development of novel therapies vol.165, 2016, https://doi.org/10.1016/j.pharmthera.2016.05.005
  2. Modulation of miRNAs in Pulmonary Hypertension vol.2015, 2015, https://doi.org/10.1155/2015/169069
  3. Epigenetic modulation as a therapeutic approach for pulmonary arterial hypertension vol.47, pp.7, 2015, https://doi.org/10.1038/emm.2015.45
  4. A PPARγ-dependent miR-424/503-CD40 axis regulates inflammation mediated angiogenesis vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-02852-4
  5. MicroRNA‑650 in a copy number‑variable region regulates the production of interleukin 6 in human osteosarcoma cells 2015, https://doi.org/10.3892/ol.2015.3581
  6. MicroRNA-103/107 is involved in hypoxia-induced proliferation of pulmonary arterial smooth muscle cells by targeting HIF-1β vol.147, 2016, https://doi.org/10.1016/j.lfs.2016.01.043
  7. MicroRNA-150 attenuates hypoxia-induced excessive proliferation and migration of pulmonary arterial smooth muscle cells through reducing HIF-1α expression vol.93, 2017, https://doi.org/10.1016/j.biopha.2017.07.028
  8. Role of Circulating miRNAs as Biomarkers in Idiopathic Pulmonary Arterial Hypertension: Possible Relevance of miR-23a vol.2015, 2015, https://doi.org/10.1155/2015/792846
  9. Negative regulation of NOD1 mediated angiogenesis by PPARγ-regulated miR-125a vol.482, pp.1, 2017, https://doi.org/10.1016/j.bbrc.2016.11.032
  10. Effect of miR-23a on anoxia-induced phenotypic transformation of smooth muscle cells of rat pulmonary arteries and regulatory mechanism vol.13, pp.1, 2016, https://doi.org/10.3892/ol.2016.5440
  11. Endothelial to Mesenchymal Transition Represents a Key Link in the Interaction between Inflammation and Endothelial Dysfunction vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.00294
  12. Dysregulation of miR-135a-5p promotes the development of rat pulmonary arterial hypertension in vivo and in vitro pp.1745-7254, 2018, https://doi.org/10.1038/s41401-018-0076-9
  13. MicroRNAs as critical regulators of the endothelial to mesenchymal transition in vascular biology vol.51, pp.2, 2018, https://doi.org/10.5483/BMBRep.2018.51.2.011