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1. INTRODUCTION

Recently conventional analog controllers for NPPs
(Nuclear Power Plants) are being replaced by digital
controllers due to their maintenance problems[1]. Usually
diversity is used in order to avoid CCFs(Common Cause
Failures) in the controllers. Using a PLC(Programmable
Logic Controller)-type controller based on microprocessors
in parallel with a PLD(Programmable Logic Device)-
type controller based on CPLD(Complex Programmable
Logic Device) or FPGA(Field Programmable Gate Array)
is one way of obtaining diversity. To this end, many
countries attempted to develop PLD-type controllers to be
operated in parallel with PLC-type controllers that were
already developed. Ukraine[2], USA[3] and Canada[4]
developed I&C(Instrumentation and Control) platforms
based on FPGA and adopted it in safety systems such as
shutdown systems. We are also developing a PLD-type
controller, and trying to verify the controller design in
Korea. 

We built structured testbenches using the classes based
on UVM(Universal Verification Methodology) supported
by SystemVerilog in order to verify the design of a PLD-
type safety class controller for NPPs and performed a
functional coverage analysis. We incorporated a UVM
register model into the testbenches. The observability
and controllability of the DUT were greatly increased

with the register model and we could automatically test
the datapaths between I/O ports and the register set of the
DUT using a scoreboard and a coverage collector. We were
also able to perform constrained random verification very
easily and systematically. Another effect of using the
register model is that the total verification time can be
reduced by partitioning the datapaths. The register model
for the DUT(Device Under Test) was reused as a register
block in the register model in the integration level test-
benches for the parent module. Thus we confirmed its
effects in the design verification. With the results of this
study, we strongly suggest the use of the register model
in the verification of the safety class controllers for NPPs
in order to get the reliability complying with IEC 62566.
We also suggest the extensive use of register sets in the
design, which helps the use of the register model for the
design verification by setting the configuration of the
design and increasing the testability. To the best of our
knowledge, this was the first attempt to incorporate a
register model into the testbenches in verifying a controller
design for NPPs in Korea.

This paper is organized as follows. In section 2, the
structure of the safety class controller, which is the DUT
to be verified in this study and its operation explained in
some detail. In section 3, we introduce the structures of
the UVM testbench and its verification components such
as sequencer, driver, monitor, adapter, scoreboard, etc.

A highly reliable safety class controller for NPPs (Nuclear Power Plants) is mandatory as even a minor malfunction can
lead to disastrous consequences for people, the environment or the facility. In order to enhance the reliability of a safety class
digital controller for NPPs, we employed a diversity approach, in which a PLC-type controller and a PLD-type controller are
to be operated in parallel. We built and used structured testbenches based on the classes supported by UVM for functional
verification of the PLD-type controller designed for NPPs. We incorporated a UVM register model into the testbenches in
order to increase the controllability and the observability of the DUT(Device Under Test). With the increased testability, we
could easily verify the datapaths between I/O ports and the register sets of the DUT, otherwise we had to perform black box
tests for the datapaths, which is very cumbersome and time consuming. We were also able to perform constrained random
verification very easily and systematically. From the study, we confirmed the various advantages of using the UVM register
model in verification such as scalability, reusability and interoperability, and set some design guidelines for verification of the
NPP controllers. 
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Section 4 presents the UVM register model integrated
into the testbench for the DUT. In section 5, we explain
the effects expected when the register model is used in
verifying the DUT design. The verification results are
described in section 6, followed by the conclusion in the
last section.

2. STRUCTURE AND OPERATIONS OF THE DUT 

Fig. 1 shows the simplified basic structure of the designed
safety class controller for NPPs. It is composed of FPM,
FDI, FDO, FAI, and FAO modules. The FPM is a processor
module and all others are I/O modules. In the module
names, F stands for FPGA, D for Digital, A for Analog, I
for Input, and O for Output. The controller has one FPM
and can have up to 16 I/O modules. All I/O modules
communicate with the processor module through a serial
bus called an SBUS. 

All I/O modules have an SBUS_CTRL submodule
which is essential for communication with the FPM
through the SBUS. Thus we chose it as an example DUT
to show how we employed the UVM register model for
verification. The SBUS_CTRL receives commands from
the FPM, such as set, out, check_id, reset, clear, enable,
and disable. Set command sends 8 bytes of data fed from
the SBUS to an output port. Out command sends 2 bytes
of output signals fed from the SBUS. Among the commands
set, out and check_id send a response signal back to the
FPM through the SBUS. All the other commands are used
to control the I/O modules.

The SBUS_CTRL has 12 internal registers, REC_reg00~09,
CRC_reg, and Tx_reg. Receive registers REC_reg00~09
hold the data received from Sin, an input pin connected
to the SBUS. The CRC(Cyclic Redundancy Code) register
CRC_reg holds the CRC code generated for the data
stored in the receive registers. Transmit register Tx_reg
receives data from REC_reg00~01 or Stat_Ireg00~05
one by one. The data stored in Tx_reg is used to form a
message to be sent back to the FPM via the Sout, an output
pin connected to the SBUS. This will be explained further
in a later section.

3. A SYSTEMVERILOG TESTBENCH USING UVM

We built a SystemVerilog testbench using UVM. Thus
we will briefly explain SystemVerilog and UVM in this
section. SystemVerilog is an extensive enhancement to
the IEEE 1364 Verilog-2001 standard. This enhancement
provides powerful capabilities for modeling hardware at
the RTL(Register Transfer Level)  and system level,
along with a rich set of new features for verifying model
functionality[6]. 

UVM stands for Universal Verification Methodology.
It combines technologies that originated in Mentor's
AVM(Advanced Verification Methodology), Mentor &
Cadence's OVM (Open Verification Methodology),
Versity's eRM(e Reuse Methodology), and Synopsys's
VMM-RAL(Verification Methodology Manual - Register
Abstraction Layer), along with new technologies such as
Resources, TLM2(Transaction Level Modeling 2) and
Phasing. It provides a powerful, flexible technology and
methodology to help you create scalable, reusable, and
interoperable testbenches[7]. 

Fig. 2 shows the structure of a UVM testbench. Unlike
a conventional testbench, it has various kinds of verification
components. The components included in the UVM agent
are sequencer, driver, monitor, analysis component, and
configuration object. Analysis component and configuration
object in agents are not shown for simplicity in the figure.
A sequencer denoted by SQR in the figure routes sequence-
items from a sequence where they are generated to a driver.
A driver converts the data inside a sequence-item into a
pin level transaction. A monitor observes pin level activity
and converts its observations into sequence-items which
are sent to components, such as scoreboards, which in
turn use them to analyze what is happening in the DUT. 

In a block level UVM testbench, the environment
(denoted by ENV) contains the agents needed to commu-
nicate with the DUT's interfaces in one place, as shown in
Fig. 2. The ENV may also contain a configuration object,
scoreboard, coverage monitor, and virtual sequencer. The
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Fig. 1. Diagram of the Designed Controller Fig. 2. Structure of a UVM Testbench
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configuration object enables the test writer to control
which of the ENV's sub-components are built. It also
contains a handle to the configuration object for each agent
that it contains. A scoreboard is an analysis component
that checks if the DUT is behaving correctly. It uses analysis
transactions received from the monitor. It usually compares
transactions from at least two agents. A coverage monitor
contains covergroups to gather functional coverage infor-
mation. A virtual sequencer is used in the stimulus gen-
eration process to allow a single sequence to control activity
via several agents. 

You can refer to the UVM cookbook for further infor-
mation about UVM testbenches explained in this section[7]. 

4. UVM REGISTER MODEL FOR THE SBUS_CTRL

The UVM register model provides a way of tracking
the register content of a DUT and a convenience layer for
accessing register within the DUT. It reflects the structure
of a hardware-software register specification. It is designed
to facilitate productive verification of programmable
hardware. Thus, the level of stimulus abstraction can be
increased and the resultant stimulus code becomes easy
to reuse, either when there is a change in the DUT register
address map, or when the DUT block is reused as a sub-
component[6].

Fig. 3 shows the structure of a UVM testbench with a
register model which adopts an explicit prediction method[7].
SQR stands for sequencer, DRV for driver, and MON for
monitor in the figure. The monitor observes a bus transaction
and sends the corresponding bus sequence item to the
predictor. The predictor looks up the accessed register,
and then updates the register contents of the register model.
Note that the actual testbench may contain multiple bus
agents, one for each interface.

The register model abstraction should reflect the
structure of a hardware-software register specification.
Thus, the details of the registers contained in the SBUS_CTRL,

which is an example DUT, will be explained in the following
section.

Fig. 4 shows I/O signals and registers of the SBUS_CTRL.
According to the characteristics and the protocols of the
I/O pins, we categorized the pins into 7 interfaces and
built 7 agents for each interface respectively. Table 1 shows
the name of the agents and their associated I/O signals.

The SBUS_CTRL has 12 registers which are denoted
by REC_reg00~09, CRC_reg, and Tx_reg. Receive registers
REC_reg00~09 receive data from the SBUS through Sin.
A message coming from the FPM has 4 fields, FUNCTION,
ID, DATA, and CRC. FUNCTION, ID, and CRC fields
are 16 bits long. The FUNCTION field is composed of 3
subfields, command, sel_bus, and pos_slot, which occupy
8 bits, 2 bits and 4 bits respectively. The remaining 2 bits
are padded with 0's. The DATA field is n * 16 bits long,
where n = 2 for the out command, n = 8 for the set command,
and n = 0 for all other commands. Fig. 5 shows the fields
of incoming/outgoing messages.

Upon receiving a message from the FPM, the DUT
stores the FUNCTION field in REC_reg00, the ID field
in REC_reg01, and the DATA field in REC_reg02~09.

Fig. 3. UVM Testbench with Register Model

Agent

Basic

Config

Sbus

Status

Indicator

Out

Set

I/O signals

Reset, Sys_Clk

Sel_Bus, Pos_Slot

Sin, Sout

Sta_Ireg00~05

Commands

Out_Ireg00~01

Set_Ireg00~07

Table 1. Agents and Associated I/O Signals of the SBUS_CTRL

Fig. 5. Fields of Incoming/Outgoing Messages

Fig. 4. I/O Signals and Registers of the SBUS_CTRL



The number of registers used to store the DATA field varies
according to its size. The CRC_reg stores the CRC code
generated from the message received. The SBUS_CTRL
also has a Tx_reg, which receives contents of receive
registers REC_reg00~01 or status registers Stat_Ireg00~05,
one at a time.

After receiving a message from the FPM, the SBUS_CTRL
sends a response message back to the FPM through the
SBUS for the three commands of check_id, set, and out.
The Tx_reg is used to form this response message. In the
response message the DATA field is filled with the infor-
mation from the status registers Stat_Ireg00~05. A CRC
code is generated from the contents of the DATA field in
the message and is appended to the message. 

The SBUS_CTRL sends the contents of the REC_reg02
and REC_reg03 to the Out_Ireg00 and Out_Ireg01 output
ports respectively for the out command and the REC_reg02~09
to the Set_Ireg00~07 output ports respectively for the set
command. 

Fig. 6 shows the contents of the register map built
from the above description. It has offset, width, access
mode, and reset value for each registers and handles to
the target agent adapter and target sequencer. In this
model, all registers have the same width, access mode,
and reset values.

The register model provides an API (Application
Programming Interface) for sequences to access software
mapped hardware registers. It also mirrors the content of
the hardware. Refer to Fig. 3 again. The adapter converts
register transactions (Reg_seq) to bus sequence items
(Bus_seq) and vice versa. The predictor receives all the
bus sequence items observed by the monitor attached to
the interface and converts them to register transactions
and updates the register database with them. 

Scoreboard is an analysis component. It has a handle
to the register model in order to access the register values.
Scoreboard compares observed data against register contents
and/or DUT contents against expected data via backdoor
access peek. By doing these comparisons, scoreboard
determines the correctness of the operations of the DUT.

5. EFFECTS OF USING A REGISTER MODEL IN
DUT VERIFICATION

We assumed the following effects from applying the
register model in the design verification of the NPP controller.

1) Improvement in testability 
The register values can be checked or set only
through indirect methods if the register model is
not applied. However, the register model allows
for the confirmation and setting of the register values
directly. In other words, the testability increase by
applying the register model is similar to improving
testability by inserting the test points in the board
test. 
a) Observability 

It is particularly more difficult to read the register
value when the register is a write-only register such
as the configuration register of a programmable
module. The register value can be read directly
without consuming simulation time by using a
backdoor peek command in the testbench when
the register model is used. Thus the DUT's observ-
ability is improved. 

b) Controllability
The status register of a DUT is a read-only register.
In this case, the controllability is low as the status
register value is determined by the DUT state and
not set directly by the test engineer. However,
controllability can be improved by employing
the register model as the status register value
can be changed directly using the backdoor poke
command in the test bench. 

2) Easy Diagnosis 
When the verification results indicate there is an
error in the DUT, it needs to be clarified which part
in specific caused the malfunction. As shown in
Fig. 7, the datapaths between the input port and the
register and the datapaths between the output port
and the register are tested in the register test when
the register model is applied. Therefore, the malfunc-
tioning datapath can be detected immediately when
an error occurs. 
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Fig. 6. Contents of the Register Map Fig. 7. Datapath Diagnosis



3) Verification Time Reduction
From Fig. 7, we can see that the datapaths are
segmented into smaller ones. Thus, applying the
register model in the verification process can be
thought to be equivalent to employing the 'divide
and conquer' strategy. Therefore, if the verification
time is longer than 0(n), the time required in the
verification of the entire DUT decreases when the
register model is used. For example, assume the
time required in the verification of the entire DUT
is n2. If the circuit is divided into 4 subsections,
and the verification is made separately for each
subsection, the time required for the verification is
4 * (n/4)2 = n2/4, thus the verification time decreases
by 1/4. 

4) Easy Generation of Cover Group
The cover group and cover point need be generated
appropriately in order to obtain meaningful functional
coverage. If such is generated based on the register
model, a more meaningful functional coverage can
be calculated. Therefore, the efforts required in
verification may be reduced. 

6. VERIFICATION RESULTS USING THE UVM
REGISTER MODEL

In order to utilize the benefits explained in the previous
section, we built a UVM testbench with a structure similar
to the one shown in Fig. 3. We incorporated the register
model explained in section 4. The testbench has 7 agents
for 7 interfaces respectively. We performed verification
of the DUT using Mentor Graphic's QuestaSim 10.2a from
which they began supporting HDL paths for the designs
written in VHDL. So we could use backdoor access to
the DUT written in VHDL.

Constrained randomization is a great way to find bugs
quickly and explore a design's state space thoroughly. The
best way to check the correctness of the DUT's behavior
is to use a monitor on each interface, which sends observed
transactions to a scoreboard where the behavior is then
checked for correctness. This frees the stimulus to be more
flexible, reusable, and random[8]. SystemVerilog also
supports automatic generation of random test cases using
a random test method[5].

We randomized the input stimuli for constrained random
verification as follows. Inside the FUNCTION field, there
are 3 subfields: command, sel_bus, and pos_slot. The
command can be one of check_id, set, out, reset, clear,
enable, and disable. The sel_bus and pos_slot have full
random values. ID is also fixed to a constant specific to
the I/O module, for example, '44F1' for the FDO module.
The DATA field and parallel input Stat_Ireg00~05 are fully
randomized without constraint. 

The Monitor sends the observed transactions on input

pins to the predictor in order to update the register values
in the register model. It also sends the observed transactions
to the scoreboard. 

The scoreboard peeks the SBUS_CTRL for hardware
register values and compares them with the sequence items
sent from the monitor. Upon receiving sequence items
for the output pins from the monitor, the scoreboard
compares them with the mirrored values stored in the
register model. It also checks the command indicator
output signals by identifying the command stored in the
REC_reg00. In this way the scoreboard is able to determine
the correctness of the DUT's operation. This process is
repeated until predetermined satisfactory coverage is
attained, which tells us that the test is complete. 

Fig. 8 shows the stimulus values observed by three
agent monitors: Status agent, Config agent, and Sbus agent.
These three agents send input stimuli to the SBUS_CTRL
at the same time.

Fig. 9 shows a snapshot of the scoreboarding process.
The upper part shows the peeked values of the DUT
registers and the lower part shows the mirrored values
stored in the database of the register model. Peek is a
backdoor access method which directly accesses the
simulator's database to get the DUT's register values
without using simulation time. Note that only 4 registers
are updated by this transaction in the figure. The 4 registers
are REC_reg00~02(denoted by rcv0~2 in the figure) and
CRC register (denoted by rcvlast register in the figure).
Scoreboard compares these values to determine the correct
operation of the SBUS_CTRL. Note that all 4 mirrored
values match the 4 peeked values respectively. Also note
that the rest of the registers REC_reg03~09(denoted by
rec3~9 in the figure) hold the old values from the previous
transaction. By doing this type of test we could verify the
integrity of the data paths from input ports to the register
set. We also performed the test to verify the integrity of
the data paths from the register set to output ports.

Fig. 10 shows the coverage report for the register model.
In the figure, RX0~9 corresponds to REC_reg00~09 respec-
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Fig. 8. Monitored Random Stimuli
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tively. RX-10 is CRC_reg and TX0 is Tx_reg. For each
message the SBUS_CTRL receives a command which is
selected randomly among 7 commands. All commands
use REC_reg00~01 and CRC_reg in common. In addition
to REC_reg00~01 and CRC_reg, check_id uses REC_reg02,
out uses REC_re02~04, and set uses REC_reg02~09. That is
why REC_reg00~01 have highest coverage, REC_reg02~04
have higher coverage than REC_reg05~09. Overall register
coverage obtained is 91.5%. Note that for some registers
such as REC_reg00~01, which contain command, sel_bus,
pos_slot, and module_id, 100% coverage is necessary.
However, the registers such as REC_reg02~09, which
contain data, do not require 100% coverage. If the coverage
for the registers REC_reg02~09 is considered too low,
we can do additional guided random testing to increase
the coverage by modifying the randomization constraints.
This is a very powerful feature of the constrained random
testing.

7. CONCLUSION

We implemented a UVM testbench to verify the design
of a safety class controller for nuclear power plants. We
incorporated a UVM register model into the testbench and
performed the constrained random testing for verification.
Constrained random testing is a very useful way to find
bugs quickly and thoroughly explore a design's state space.
We also collected functional coverage for the register model
using a functional coverage monitor. With the coverage
collector, we can perform adaptive random testing to
increase the register coverage to a satisfactory level. From
the study we confirmed that backdoor peek access supported
by a UVM register model is very useful for functional
verification of a DUT with registers, especially when the
register is volatile. We also confirmed that the register
model is scalable, reusable, and interoperable in integration
level testing where the DUT is composed of multiple
modules including SBUS_CTRL. In this case, the upper
level register model contains the register model for
SBUS_CTRL as a register block. We can conclude that
the UVM testbench with a register model is a very strong
and powerful tool for functional verification of safety
class controllers for nuclear power plants, which require
a high level of reliability.
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