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STRUCTURE OF IDEMPOTENTS

IN RINGS WITHOUT IDENTITY

Nam Kyun Kim, Yang Lee, and Yeonsook Seo

Abstract. We study the structure of idempotents in polynomial rings,
power series rings, concentrating in the case of rings without identity.
In the procedure we introduce right Insertion-of-Idempotents-Property
(simply, right IIP) and right Idempotent-Reversible (simply, right IR) as
generalizations of Abelian rings. It is proved that these two ring proper-
ties pass to power series rings and polynomial rings. It is also shown that
π-regular rings are strongly π-regular when they are right IIP or right
IR. Next the noncommutative right IR rings, right IIP rings, and Abelian

rings of minimal order are completely determined up to isomorphism.
These results lead to methods to construct such kinds of noncommuta-
tive rings appropriate for the situations occurred naturally in studying
standard ring theoretic properties.

1. Definitions and notations

Throughout this paper, R denotes an associative ring without identity, unless
otherwise stated. Denote the n by n full (resp., upper triangular) matrix ring
over R by Matn(R) (resp., Un(R)). We let eij denote the usual matrix units
with 1 in the (i, j)-position and zeros elsewhere, if the base ring has identity 1.
Denote {(aij) ∈ Un(R) | the diagonal entries of (aij) are all equal} by Dn(R).
Zn denotes the ring of integers modulo n. GF (pn) denotes the Galois field of
order pn. J(R) denotes the Jacobson radical of R. | | denotes the cardinality.
The characteristic of R is denoted by char R, and |a| denotes the order of a ∈ R
in the additive subgroup of R generated by a. R+ means the additive Abelian
group (R,+). The polynomial ring with an indeterminate x over R is denoted
by R[x]. While speaking about minimal ring in a certain class of rings, we
refer to a ring with minimal order for rings in that class, due to Xue [21]. The
notation (S) stands for the two-sided ideal of R generated by ∅ 6= S ⊆ R, and
we also write (a1, . . . , an) in place of (S) for simplicity when S = {a1, . . . , an}.

A ring is called Abelian if every idempotent is central. The zero in a nil ring
is the only idempotent and so every nil ring is Abelian. The class of Abelian
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rings contains reduced rings (i.e., rings without nonzero nilpotent elements)
and commutative rings. Another generalization of both reduced rings and
commutative rings is Insertion-of-Factors-Property (simply IFP) which was
introduced by Bell [4]. Due to Bell, a ring R is usually called IFP if ab = 0
implies aRb = 0 for a, b ∈ R. Shin [20] used the term SI for the IFP, while
Narbonne [19] used semicommutative in place of the IFP. In fact reduced rings
are easily shown to be IFP. It is also straightforward to check that every IFP
ring is Abelian when it has an identity. However this result is no longer valid
for rings without identity as we see in Section 2.

2. Right IIP rings and right IR rings

In this section we observe some interesting ring-theoretic generalizations of
Abelian rings. We introduce the concepts of right IIP rings and right IR rings.
The minimal non-Abelian one-sided IIP (IR) rings will be completely deter-
mined, up to isomorphism. It will be also shown that one-sided IR condition
passes to power series rings and polynomial rings.

Lemma 2.1. For a ring R with identity the following conditions are equivalent:
(1) R is Abelian;
(2) If abe = 0 for a, b, e2 = e ∈ R, then aeb = 0;
(3) If eab = 0 for a, b, e2 = e ∈ R, then aeb = 0;
(4) If ae = 0 for a, e2 = e ∈ R, then ea = 0;
(5) If ea = 0 for a, e2 = e ∈ R, then ae = 0.

Proof. (1)⇒(2), (2)⇒(4), (1)⇒(3), and (3)⇒(5) are obvious.
Let e2 = e, r ∈ R. Then r(1 − e)e = 0 and re(1 − e) = 0. If R satisfies

the condition (4), then er(1 − e) = 0 and (1 − e)re = 0. These yield re = er,
showing (4) ⇒ (1). The proof of (5) ⇒ (1) is similar. �

In this paper we consider the conditions of Lemma 2.1 in rings without
identity, and observe the structure of rings satisfying the conditions.

Definition 2.2. (1) A ring R is said to satisfy right (resp. left) Insertion-

of-Idempotents-Property (simply, called right (resp. left) IIP) if it satisfies the
condition (2) (resp. (3)) of Lemma 2.1.

(2) A ring is called right (resp. left) Idempotent-Reversible (simply, IR) if it
satisfies the condition (4) (resp. (5)) in Lemma 2.1.

The class of one-sided IIP rings contains both Abelian rings and nil rings,
and right (resp. left) IIP rings are right (resp. left) IR by Lemma 2.4 below.
A ring is both left and right IIP if and only if it is both left and right IR if and
only if it is Abelian by Proposition 2.8 to follow.

This Insertion-of-Idempotents-Property is not left-right symmetric as illus-
trated by the following example.
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Example 2.3. (1) Let F be a field and F 〈a, b〉 the free algebra with noncom-
muting two indeterminates a, b over F . Define

A = {f ∈ F 〈a, b〉 | the constant term of f is zero}

and I the ideal of A generated by

ab, a2 − a, b2.

Set R = A/I and identify the elements in A with their images in R for sim-
plicity. Then a2 = a and ab = 0 = b2 in R. Since aba = 0 (with a2 = a) but
baa = ba 6= 0, R is not left IIP.

We will show that R is right IIP. By the construction of R, every element
f ∈ R is of the form

f = α1a+ α2ba+ α3b,

where α1, α2, α3 ∈ F .
Suppose f2 = f for f = α1a+ α2ba+ α3b. Then

α2
1a = α1a;(1)

α2ba = α1(α2 + α3)ba;(2)

α3b = 0.(3)

Eq. (3) implies α3 = 0, entailing α2ba = α1α2ba. Eq. (1) implies α2
1 = α1, and

hence α1 = 0 or α1 = 1.
Assume α1 = 0. Then Eq. (2) implies α2ba = 0 and so α2 = 0. This yields

f = 0.
Assume α1 = 1. Then α2ba = α2ba since α2ba = α1α2ba. This yields

f = a+ α2ba.
Therefore the set of all idempotents in R is

E = {0, a+ γba | γ ∈ F}.

Now let f = α1a+ α2ba+ α3b and g = β1a+ β2ba+ β3b for αi, βi ∈ F for
i = 1, 2, 3. Then, for e = a+ γba ∈ E with γ ∈ F , we have

fge = fg(a+ γba) = (α1β1a+ (α2β1 + α3β1)ba)(a+ γba)

= α1β1a+ (α2β1 + α3β1)ba

= (α1a+ α2ba+ α3b)β1a

= (α1a+ α2ba+ α3b)aβ1a

= (α1a+ α2ba+ α3b)a(β1a+ β2ba+ β3b)

= (α1a+ α2ba+ α3b)(a+ γba)(β1a+ β2ba+ β3b)

= f(a+ γba)g = feg.

Then fge = 0 implies feg = 0 for e2 = e ∈ R. Therefore R is right IIP.
(2) Let A be the same ring as in (1). Let J be the ideal of A generated by

ba, a2 − a, b2.
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Then the ring R = A/J is not right IIP but left IIP by a similar computation
to (1).

(3) Let D be a domain with identity and R = (D D
0 0 ) a subring of U2(D).

Note that every nonzero idempotent is of the form ( 1 α
0 0 ) with α ∈ D. Consider

x =

(

a b
0 0

)

, y =

(

c d
0 0

)

, e =

(

1 α
0 0

)

∈ R.

Then exy =

(

ac ad
0 0

)

= xey, but

xye =

(

ac acα
0 0

)

6=

(

ac ad
0 0

)

= xey

when acα 6= ad (e.g. a = c = α = 1, d = 0). Thus R is left IIP but not right
IIP.

(4) Let D be a domain with identity and S = ( 0 D
0 D ) a subring of U2(D).

Then S is right IIP but not left IIP through a similar computation as in (3),
noting that every nonzero idempotent is of the form

(

0 β
0 1

)

with β ∈ D.

As we see in Example 2.3, one-sided IIP rings need not be Abelian when
they do not have identity.

Lemma 2.4. If R is a right (resp. left) IIP ring, then R is right (resp. left)
IR.

Proof. Let R be right (resp. left) IIP. Suppose ae = 0 (resp. ea = 0) for
a, e2 = e ∈ R. Then eae = 0, and since R is right (resp. left) IIP we get
ea = eea = 0 (resp. ae = aee = 0). �

Regularity, π-regularity, and strong π-regularity have important roles in ring
theory and module theory. A ring R is said to be π-regular if for every x ∈ R
there exists a positive integer n, depending on x, such that xn ∈ xnRxn. A
ring R is said to be strongly π-regular if for every x ∈ R there exists a positive
integer n, depending on x, such that xn ∈ Rxn+1. Strong π-regularity is left-
right symmetric by Dischinger [7]. A ring R is said to be (von Neumann)
regular if x ∈ xRx for every x ∈ R. Regular rings are clearly π-regular but
the converse need not hold as can be seen by Z4. Strongly π-regular rings are
π-regular by Azumaya [3]. For a division ring D and a right D-module V , it
is well-known that the endomorphism ring of V over D is strongly π-regular if
and only if V is finite dimensional over D. So if V is infinite dimensional over
D, then the endomorphism ring of V over D is regular (hence π-regular) but
not strongly π-regular. Abelian π-regular rings are clearly strongly π-regular.

Proposition 2.5. A right IR π-regular ring is strongly π-regular.

Proof. Let R be a right IR π-regular ring and x ∈ R. Since R is π-regular,
there exist y ∈ R and a positive integer n such that xn = xnyxn. Here we
claim xn = x2ny, implying that R is strongly π-regular. We first have (xn −
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x2ny)xny = xnxny−xn(xnyxn)y = xnxny−xn(xn)y = 0. Since (xny)2 = xny
and R is right IR, we get 0 = xny(xn − x2ny) = xn − x2ny and xn = x2ny. �

Note. (1) The idempotent-reversible condition is also not left-right symmetric
by Example 2.3(1,2). Letting R be the ring in Example 2.3(1) (resp. Example
2.3(2)), we have that R is right (resp. left) IIP (hence right (resp. left) IR)
and that R is not left (resp. right) IR since ab = 0 but ba 6= 0 (resp. ba = 0
but ab 6= 0), where a2 = a, b ∈ R.

(2) The ring in Example 2.3(3) (resp. Example 2.3(4)) is not right (resp. not
left) IR as can be seen by e12e11 = 0 6= e11e12 = e12 (resp. e12e22 6= 0 = e22e12).

The following examples illustrate that the idempotent-reversible condition
is not left-right symmetric, and that right IR rings need not be right IIP.

Example 2.6. (1) There exists a right IR ring that is not right IIP. Let F
be a field and F 〈a, b〉 the free algebra with noncommuting indeterminates a, b
over F . Define

A = {f ∈ F 〈a, b〉 | the constant term of f is zero}

and J the ideal of A generated by

ab, a2 − a.

Set R = A/J and identify the elements in A with their images in R for sim-
plicity. Then a2 = a and ab = 0 in R. Since ab = 0 (with a2 = a) but ba 6= 0,
R is not left IR.

We will show that R is right IR but not right IIP. By the construction of R,
every element f ∈ R is of the form

f = αa+ f1a+ f2

where α ∈ F and f1, f2 ∈ bF [b].
Suppose f2 = f for f = αa+ f1a+ f2 ∈ R. Then

α2a = αa;(1)

f1a = (αf1 + αf2 + f2f1)a;(2)

f2 = f2
2 .(3)

Eq. (3) implies f2 = 0, entailing f1a = αf1a from Eq. (2). Next Eq. (1) implies
α2 = α, and hence α = 0 or α = 1.

Assume α = 0. Then f1a = αf1a = 0 and so f1 = 0, leading to f = 0.
Assume α = 1. Then f1a = αf1a = f1a and so f = a+ f1a.
Therefore the set of all idempotents in R is

E = {0, a+ ka | k ∈ bF [b]}.

Now let f = αa + f1a + f2 ∈ R for α ∈ F and fi ∈ bF [b] for i = 1, 2. If
e = 0, then clearly fe = 0 = ef . If fe = 0 for e = a + ka ∈ E with k ∈ bF [b],
then we have

0 = (αa+ f1a+ f2)(a+ ka) = αa+ (f1 + f2 + f2k)a
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and so α = 0, this leads to f = f1a+ f2. This yields

ef = (a+ ka)(f1a+ f2) = 0

by the construction of J . Thus R is right IR.
Let

x = ba− b, y = a, e = a+ ba.

Then xye = 0 but xey = (ba − b)(a + ba)a = −b2a 6= 0; hence R is not right
IIP.

(2) Let A be the same ring as in (1). Let K be the ideal of A generated by

ba, a2 − a.

Then the ring R = A/K is left IR (and not left IIP) but not right IR by a
similar computation to (1).

Due to Lambek [17], a ring R is called symmetric if rst = 0 implies rts = 0
for all r, s, t ∈ R. Anderson-Camillo [1] used the term ZC3 for symmetric
rings. Lambek proved, in [17, Proposition 1], that a ring R is symmetric if
and only if rσ(1)rσ(2) · · · rσ(n) = 0 for any permutation σ of the set {1, 2, . . . , n}
when r1r2 · · · rn = 0 for any positive integer n and ri ∈ R. Anderson-Camillo
also obtained this result independently in [1, Theorem I.1]. We will use this
result freely. According to Cohn [6], a ring R is called reversible if ab = 0
implies ba = 0 for a, b ∈ R. Anderson-Camillo [1] used the term ZC2 for
reversible rings. Essential properties of symmetric rings and reversible rings are
developed in related literature. It is evident that commutative rings are both
symmetric and reversible. Reduced rings are symmetric by [1, Theorem I.3]
or [17, Proposition 1], and there are many kinds of non-reduced commutative
rings.

If R is a symmetric ring with identity, then R is clearly reversible (but the
converse need not hold by [1, Examples I.5] or [18, Examples 5 and 7]); however
for rings without identity this implication is no longer valid as we see in the
following example.

Example 2.7. (1) Let A be a ring with identity andR =
{(

0 a b
0 0 c
0 0 0

)

| a, b, c ∈A
}

a subring of U3(A). Since R
3 = 0, R is clearly symmetric. But since e23e12 = 0

and e12e23 = e13 6= 0, R is not reversible.
(2) The construction is due to [18, Example 1]. Let S = {a, b} be the

semigroup with multiplication a2 = ab = a, b2 = ba = b. Put R = Z2S, which
is a four-element semigroup ring. Then a(a + b) = a2 + ab = 2a = 0 but
(a+ b)a = a2 + ba = a+ b 6= 0; hence R is not reversible. Since xyz = xzy for
all x, y, z ∈ R, R is symmetric.

Recall that any symmetric ring is Abelian when it has an identity. But a
symmetric ring, without identity, need not be Abelian as can be seen by the
relations a2 = a, b2 = b, a = ab 6= ba = b in Example 2.7(2). The class of
Abelian rings contains reversible rings as we see in the following proposition.
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Proposition 2.8. Let R be a ring.

(1) R is right (resp. left) IR if and only if er = ere (resp. re = ere) for

every e2 = e ∈ R and r ∈ R.

(2) If R is right (resp. left) IIP, then er = ere (resp. re = ere) for every

e2 = e ∈ R and r ∈ R.

(3) If R is reversible, then R is Abelian.

Proof. (1) Let R be right (resp. left) IR, and r, e2 = e ∈ R. Then e(er −
re)e = 0. Since R is right (resp. left) IR, 0 = ee(er − re) = er − ere (resp.
0 = (er − re)ee = ere − re). This implies er = ere (resp. re = ere).

Conversely, suppose that er = ere for every r, e2 = e ∈ R. Let af = 0 for
a, f2 = f ∈ R. Then fa = faf = 0. The computation for the left case is
similar.

(2) is obtained from Lemma 2.4 and (1).
(3) It is obvious that reversible rings are left and right IR. So (3) is an

immediate consequence of (1). �

The following corollary is obtained immediately from Proposition 2.8(1), (2).

Corollary 2.9. Let R be a ring. Then R is both left and right IR if and only

if R is Abelian if and only if R is both left and right IIP.

Note that both symmetric rings and reversible rings are IFP. There exist
many kinds of Abelian rings which are not IFP (hence are neither reversible
nor symmetric) as we see in the following example.

Example 2.10. (1) Let A be a ring with identity and

R =























0 a b c
0 0 d e
0 0 0 f
0 0 0 0









| a, b, c, d, e, f ∈ A















a subring of U4(A). Since R4 = 0, 0 is the only idempotent and so R is clearly
Abelian. But e23e12 = 0, e12e23 = e13 6= 0, and e12e34e23 = 0, e12e23e34 =
e14 6= 0. So R is not IFP and so is neither reversible nor symmetric.

(2) Let D be a domain with identity and A = D ⊕D. Define

R =























α a b c
0 α d e
0 0 α f
0 0 0 α









| α ∈ D ⊕ 0 and a, b, c, d, e, f ∈ A















as a subring of U4(A). Then R is Abelian by [12, Lemma 2], but R is not IFP
by the same calculation as in (1).
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(3) Let A be an Abelian ring with identity and

R =























β a b c
0 β d e
0 0 β f
0 0 0 β









| β, a, b, c, d, e, f ∈ A















a subring, of U4(A), with identity. Then R is Abelian by [12, Lemma 2], but
R is not IFP by the same calculation as in (1).

(4) The construction is due to [14, Example 2.1]. Let A = Z2〈a0, a1, a2, b0, b1,
b2〉 be the free algebra with noncommuting indeterminates a0, a1, a2, b0, b1, b2
over Z2. Next define B as the subalgebra of A of polynomials with zero constant
terms. Consider an ideal of the ring B, say I, generated by the following
elements:

a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, a1b2 + a2b1, a2b2, a0rb0, a2rb2,

b0a0, b0a1 + b1a0, b0a2 + b1a1 + b2a0, b1a2 + b2a1, b2a2, b0ra0, b2ra2,

(a0 + a1 + a2)r(b0 + b1 + b2), (b0 + b1 + b2)r(a0 + a1 + a2), and, r1r2r3r4,

where r, r1, r2, r3, r4 ∈ B. Set R = B/I. Then R is a ring which is both
reversible and symmetric by the calculation in [11, Example 3.1]. But R[x]
is not IFP (hence is neither reversible nor symmetric) as can be seen by the
products (a0 + a1x+ a2x

2)(b0 + b1x+ b2x
2) = 0 and (a0 + a1x+ a2x

2)R(b0 +
b1x+b2x

2) 6= 0. Note that R[x] is Abelian by [13, Lemma 8] since R is Abelian
by Proposition 2.8(3). Notice that A/I, with identity, also satisfies the same
properties as R.

We also see the relations among the concepts above for rings without identity
in the following example.

Example 2.11. (1) Let D be a domain and R = (D D
0 0 ). Let 0 6= x =

( a b
0 0 ) , 0 6= y = ( c d

0 0 ) ∈ R. If xy = 0, then a = 0. Whence for any z =
(

e f
0 0

)

∈ R
we also get xzy = 0. So R is IFP, but R is non-Abelian as can be seen by the
idempotent e11. A similar calculation shows that ( 0 D

0 D ) is also IFP but non-
Abelian. These non-Abelian IFP rings are neither reversible nor symmetric by
Proposition 2.8(3).

(2) Let D be a domain. Then A = (D D
0 0 ) and B = ( 0 D

0 D ) are both IFP by
the argument in (1), but A is not right IR (hence not right IIP) and B is not
left IR (hence not left IIP) by Lemma 2.4.

(3) An IFP ring, with identity, need not reversible by the subring

R =











a b c
0 a d
0 0 a



 | a, b, c, d ∈ A







of U3(A), where A is a reduced ring. In fact, R is IFP by [14, Proposition 1.2],
but it is not reversible since e12e23 = e13 6= 0 = e23e12.
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(4) Let R be any ring in Example 2.10(1,2,3). Then R is Abelian (hence left
and right IIP) by the arguments in Example 2.10(1,2,3). However R is not IFP
by [14, Example 1.3]. In [14, Example 1.3], we see that (e12−e13)(e24+e34) = 0
but (e12 − e13)e23(e24 + e34) = e14.

There exist many regular rings without identity as can be seen by the direct
sum of infinitely many regular rings with identity. For regular rings, previously
mentioned ring properties are all equivalent as we see in the following theorem.

Theorem 2.12. Given a regular ring R, the following conditions are equivalent:
(1) R is reduced;
(2) R is symmetric;
(3) R is reversible;
(4) R is IFP;
(5) R is Abelian;
(6) R is right IIP;
(7) R is left IIP;
(8) R is right IR;
(9) R is left IR.

Proof. We have obviously the implications (1) ⇒ (2), (1) ⇒ (3), (2) ⇒ (4),
(3) ⇒ (4), (5) ⇒ (6), and (5) ⇒ (7). The implications (2) ⇒ (5) and (3) ⇒ (5)
are obtained by Proposition 2.8(3). If R is Abelian and a2 = 0 for a ∈ R, then
0 = a2 = a2b = aab = aba = a and so R is reduced, where a = aba for some
b ∈ R (by the regularity of R). Thus the conditions (1), (2), (3), and (5) are
always equivalent when R is regular. The implications (6) ⇒ (8) and (7) ⇒ (9)
are obtained by Lemma 2.4.

When R has an identity then (4) ⇒ (5) is obvious. So if R has an identity,
then the equivalences are obtained by Lemmas 2.1 and 2.4. So we assume that
R does not have an identity. So it suffices to show that (8) ⇒ (5), (9) ⇒ (5),
and (4) ⇒ (5).

(8) ⇒ (5): Let R be right IR. Assume on the contrary that there exist
r, e2 = e ∈ R with re− er 6= 0. Let x = re− er. Then ere = er by Proposition
2.8(1), entailing ex = 0. Since R is regular, there exists y ∈ R such that
x = xyx. Then

0 = ex = xexy = xyxe = xe.

Now ex = 0 = xe gives er = ere = re, a contradiction. Thus R is Abelian.
The proof of (9) ⇒ (5) is similar.

(4) ⇒ (5): Let R be IFP. Assume on the contrary that there exist r, e2 =
e ∈ R with re − er 6= 0. Let y = ere − re, then ey = 0. Since R is regular,
there exists z ∈ R such that ye = yezye. Then

0 = ey = ezy = yezye = ye,
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leading to ere = re. Next let y1 = ere − er, then y1e = 0. Since R is regular,
there exists z1 ∈ R such that ey1 = ey1z1ey1. Then

0 = y1e = y1z1e = ey1z1ey1 = ey1,

hence ere = er. Now we get re = ere = er, a contradiction. �

As we see in Example 2.11, IFP rings without identity need not be Abelian
and so the proofs of directions (e.g., (4)⇒(5)) in Theorem 2.12 are necessary.

Regular rings are clearly π-regular, and there exist many kinds of π-regular
rings that are not regular rings. Based on Theorem 2.12, one may conjecture
that π-regular right IIP rings are also Abelian. But the ring S = ( 0 D

0 D ) (D:
a division ring) is a non-Abelian right IIP ring by Example 2.3(4). A quick
calculation shows that S is not regular but π-regular.

In the following arguments we examine various kinds of ring extensions on
the right IIP and right IR conditions. Quick calculations reveal the following
lemma.

Lemma 2.13. (1) The class of right IIP rings is closed under subrings, direct

sums, and direct products.

(2) The class of right IR rings is closed under subrings, direct sums, and

direct products.

(3) The class of Abelian rings is closed under subrings, direct sums, and

direct products.

We first compute the case of polynomial rings and power series rings. Given
a ring R the power series ring, with an indeterminate x over R, is denoted by
R[[x]].

Theorem 2.14. Let R be a ring. Then we have the following results:
(1) R is right IR if and only if so is R[[x]].
(2) R is right IR if and only if so is R[x].

Proof. (1) It suffices to show the necessity. Let R be right IR. Suppose that
f(x)e(x) = 0 for f(x) =

∑

∞

i=0 aix
i, e(x)2 = e(x) =

∑

∞

j=0 ejx
j ∈ R[[x]].

From e(x)2 = e(x), we have the following equations:

e20 = e0

e1 = e0e1 + e1e0(1)

e2 = e0e2 + e21 + e2e0(2)

...

en = e0en + e1en−1 + · · ·+ en−1e1 + ene0

...

Multiplying Eq. (1) by e0 on the left, we get e0e1 = e0e1+e0e1e0 and this gives
e0e1e0 = 0. Since R is right IR, we have e0e1 = 0 and so this yields e1 = e1e0.
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Then from Eq. (2), we get e2 = e0e2 + e21 + e2e0 = e0e2 + e1e0e1 + e2e0 =
e0e2 + e2e0 since e0e1 = 0. Multiplying this equation by e0 on the left, we get
e0e2 = e0e2 + e0e2e0 and this gives e0e2e0 = 0. Since R is right IR, we have
e0e2 = 0 and so this yields e2 = e2e0. We will proceed by induction. Assume
that e0ej = 0, ej = eje0 for j ∈ {1, . . . , k − 1}. Then

ek = e0ek + e1ek−1 + · · ·+ ek−1e1 + eke0

= e0ek + e1e0ek−1 + · · ·+ ek−1e0e1 + eke0

= e0ek + eke0.

Multiplying ek = e0ek + eke0 by e0 on the left, we get e0ek = e0ek + e0eke0
and this gives e0eke0 = 0. Since R is right IR, we have e0ek = 0 and so this
yields ek = eke0. Thus we now have

e20 = e0 and e0ej = 0, ej = eje0 for all j ∈ {1, . . . , k}.

Thus the induction gives

(3) e20 = e0 and e0ej = 0, ej = eje0 for all j ∈ {1, 2, . . .}.

Next from f(x)e(x) = 0, we have the following equations:

0 = a0e0

0 = a0e1 + a1e0(4)

0 = a0e2 + a1e1 + a2e0(5)

...

0 = a0en + a1en−1 + · · ·+ an−1e1 + ane0

...

a0e0 = 0 implies e0a0 = 0 since R is right IR. Multiplying Eq. (4) by e0 on
the left, we get 0 = e0a0e1 + e0a1e0 = e0a1e0 since e0a0 = 0. Since R is
right IR, we have e0a1 = 0. Multiplying Eq. (5) by e0 on the left, we get
0 = e0a0e2 + e0a1e1 + e0a2e0 = e0a2e0 since e0a0 = 0 and e0a1 = 0. Since
R is right IR, we have e0a2 = 0. We will proceed by induction. Assume that
e0ai = 0 for all i ∈ {0, 1, . . . , k − 1}. Then

0 = a0ek + a1ek−1 + · · ·+ ak−1e1 + ake0

= e0a0ek + e0a1ek−1 + · · ·+ e0ak−1e1 + e0ake0

= e0ake0.

Since R is right IR, we have e0ak = 0. Thus we now have

e0ai = 0 for all i ∈ {0, 1, . . . , k}.

Thus the induction gives

(6) e0ai = 0 for all i ∈ {0, 1, 2, . . .}.
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Now consider ejai for all i, j. If j = 0, then ejai = 0 by the result (6).
If j ≥ 1, then ejai = eje0ai by the result (3) and so the result (6) implies
ejai = eje0ai = 0. These yield e(x)f(x) = 0 and thus R[[x]] is right IR.

(2) comes from (1) and Lemma 2.13(2). �

In the proof of Theorem 2.14, we obtain and use the fact that e0e(x) = e0
and e(x)e0 = e(x).

The left IR condition also can go up to polynomial rings by similar arguments
to the proof of the preceding theorem.

Corollary 2.15 ([14, Lemma 8]). Suppose that a ring R is Abelian. Then we

have the following results:
(1) Every idempotent of R[x] is in R and R[x] is Abelian.

(2) Every idempotent of R[[x]] is in R and R[[x]] is Abelian.

Proof. Let R be Abelian. Then by the proof of Theorem 2.14, every idempotent
in R[[x]] is of the form e2 = e ∈ R. The rest is obtained from Theorem 2.14
and Corollary 2.9. �

Lastly we study the minimality for non-Abelian right (left) IIP (IR) rings.
(

0 Z2

0 Z2

)

(resp.
(

Z2 Z2

0 0

)

) is right (resp. left) IIP by Example 2.3(4) (resp. Exam-

ple 2.3(3)), but not left (resp. right) IR as can be seen by e22e12 = 0 6= e12 =
e12e22 (resp. e11e12 = e12 6= 0 = e12e11). Given a ring R, the upper nilradical
(i.e., the sum of all nil ideals) and the set of all nilpotent elements in R are
denoted by N∗(R) and N(R), respectively.

Theorem 2.16. For a ring R, we have the following results:
(1) If R is a minimal non-Abelian right IIP ring, then R is isomorphic to

(

0 Z2

0 Z2

)

.

(2) If R is a minimal non-Abelian left IIP ring, then R is isomorphic to
(

Z2 Z2

0 0

)

.

(3) If R is a minimal non-Abelian right IR ring, then R is isomorphic to
(

0 Z2

0 Z2

)

.

(4) If R is a minimal non-Abelian left IR ring, then R is isomorphic to
(

Z2 Z2

0 0

)

.

Proof. Let R be a minimal non-Abelian right IR ring. Then |R| = 4 by the

existence of the right IR ring
(

0 Z2

0 Z2

)

.

If R is nilpotent, then by [15, Theorem 2.3.3], there is a basis {a, b} for R
over Z2 such that a2 = b2 = ab = ba = 0 or a2 = b, a3 = 0. This implies that
R is commutative, a contradiction.

Suppose J(R) = 0. Here assume that the characteristic of R is ≥ 3. Then
there exists a nonzero x ∈ R with |x| ≥ 3. This yields |x| = 4 since |R| = 4,
entailing R = {0, x, 2x, 3x}. So R is commutative, a contradiction. Thus
the characteristic of R is 2. Whence we can construct an extension ring R1

by attaching an identity to R, i.e., R1 = R × Z2 with (x1, n1) + (x2, n2) =
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(x1 + x2, n1 + n2) and (x1, n1)(x2, n2) = (x1x2 + n1x2 + n2x1, n1n2). Then R1

has the identity (0, 1) and a subring R × 0 ∼= R. Moreover since J(R) = 0, we
also have J(R1) = 0. By the Wedderburn-Artin theorem, R1 ∼= Matn1

(Z2) ⊕
· · · ⊕Matnk

(Z2) for some ni ≥ 1 (i = 1, . . . , k). But |R1| = 8, and so every ni

must be 1, yielding k = 3. Then R1 is commutative and so is R, a contradiction.
We now have thatR has non-nilpotent and J(R) 6= 0. This yields |J(R)| = 2,

and this implies R/J(R) ∼= Z2. By [16, Proposition 3.6.2], there exists an
idempotent e ∈ R such that 1+J(R) = e+J(R). Since R is non-Abelian, there
exists b ∈ R such that eb 6= be, entailing R = {0, e, b, e+ b} and J(R) = {0, b},
b2 = 0. Let eb 6= 0 and assume eb = e + b. Then 0 = ebb = eb + bb = eb and
so eb = b (if eb = e, then 0 = ebb = eb). Similarly be = b when be 6= 0. Since
be 6= eb, we have two cases

(be = b, eb = 0) and (eb = b, be = 0).

If R is right IR, then R is the former case; and if R is left IR, then R is the latter
case. Next let R1 =

(

0 Z2

0 Z2

)

and R2 =
(

Z2 Z2

0 0

)

. In the former case, R ∼= R1 by
e 7→ e22, b 7→ e12; and in the latter case, R ∼= R2 by e 7→ e11, b 7→ e12. These
complete the proof since right (resp. left) IIP ring is right (resp. left) IR by
Lemma 2.4. �

3. Abelian rings of minimal order

In this section we observe the classes of minimal Abelian rings. The following
lemma is a base for our process.

Lemma 3.1. Let R be an Abelian ring with identity. Then R is semiperfect if

and only if R is a finite direct sum of local rings.

Proof. Suppose that R is semiperfect. Then R has a finite orthogonal set of
local idempotents whose sum is 1 by [16, Proposition 3.7.2], say R =

∑n

i=1 eiR
such that each eiRei is a local ring. Since R is Abelian, each eiR is an ideal of
R with eiR = eiRei. The converse is trivial. �

First note the following kinds of Abelian rings. A ring is called right (resp.
left) duo if every right (resp. left) ideal is two-sided, due to Feller [10]. It is
obvious that one-sided duo rings are IFP.

Example 3.2. (1) R1 = D3(Z2) is IFP by [14, Proposition 1.2]. So R1 is a
noncommutative Abelian ring of order 16 over Z2. Note that R1 is neither left
nor right duo. Next consider A = Z2〈x, y〉, the free algebra with noncommuting
indeterminates x, y over the field Z2. Due to Xu and Xue [22, Example 7], let
I be the ideal of A generated by

x3, y2, yx, x2 − xy

and B = A/I. Then B is IFP by the argument in [22, Example 7]. But R1 is
isomorphic to B through the correspondence x 7→ e12 + e23 and y 7→ e23.
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(2) The construction is due to Xue [21, Example 2]. Note that

R2 =

{(

a b
0 a2

)

| a, b ∈ GF (22)

}

is duo (hence IFP) by the computation in [21, Example 2]. So R2 is a noncom-
mutative Abelian ring of order 16 over GF (22).

(3) The construction is due to Xue [21, Example 2]. Let Z4〈x, y〉 be the free
algebra with noncommuting indeterminates x, y over Z4. Let R3 = Z4〈x, y〉/I
where I is the ideal of Z4〈x, y〉 generated by x3, y3, yx, x2 − xy, x2 − 2, y2 −
2, 2x, 2y. Then R3 is duo (hence IFP) by the computation in [21, Example 2].
So R3 is a noncommutative Abelian ring of order 16 over Z4.

(4) The construction is due to Xue [21, Example 2]. Let R = Z2〈x, y〉 be
the free algebra with noncommuting indeterminates x, y over the field Z2. Let
I be the ideal of R generated by

x3, y3, yx, x2 − xy, y2 − xy

and R4 = R/I. Then R4 is duo (hence IFP) by the computation in [21,
Example 2]. So R4 is a noncommutative Abelian ring of order 16 over Z2.

(5) The construction is due to Xu and Xue [22, Example 7]. Let R = Z4〈x, y〉
be the free algebra with noncommuting indeterminates x, y over Z4. Let I be
the ideal of R generated by

x3, y2, yx, x2 − xy, x2 − 2, 2x, 2y

and R5 = R/I. Then R5 is IFP by the argument in [22, Example 7]. So R5 is
a noncommutative Abelian ring of order 16 over Z4.

The rings in Example 3.2 are minimal noncommutative Abelian rings with
identity as we see in the following theorem.

Theorem 3.3. Let R be a ring with identity. If R is a minimal noncommu-

tative Abelian ring, then R is of order 16 and is isomorphic to Ri for some

i ∈ {1, 2, 3, 4, 5}, where Ri’s are the rings in Example 3.2.

Proof. We apply the proof of [11, Theorem 2.6]. Eldridge proved that a finite
ring is commutative when its order has a cube free factorization in [8, Theo-
rem], and that if a finite noncommutative ring is of order p3, p a prime, then it
is isomorphic to U2(GF (p)) in [8, Proposition]. Thus every minimal noncom-
mutative ring is isomorphic to U2(Z2). But U2(Z2) is non-Abelian, and so a
minimal noncommutative Abelian ring is of order 16 by the ring in Example
3.2(1).

Let R be a minimal noncommutative Abelian ring. Then R is a local ring
by Lemma 3.1 since R is minimal. Here we have three cases: |J(R)| = 2,
|J(R)| = 4 or |J(R)| = 8, where |J(R)| means the cardinality of J(R). Note
that R/J(R) is a field and J(R) is a vector space over R/J(R).

The case of |J(R)| = 2 is impossible by the proof of [11, Theorem 2.6].
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Consider the case of |J(R)| = 4. In this case R is isomorphic to

{(

a b
0 a2

)

| a, b ∈ GF (22)

}

by the proof of [11, Theorem 2.6].
Lastly suppose |J(R)| = 8. Then R/J(R) ∼= Z2, and J(R) is a nilpotent

algebra of dimension 3 over Z2. Thus, by Kruse and Price [15, Theorem 2.3.6],
J(R) has a basis {a, b, c}, with J(R)c = cJ(R) = 0, such that one of the
following conditions holds:

(1) a2 = ab = ba = b2 = 0;
(2) a2 = b2 = 0, ab = −ba = c;
(3) a2 = c, ab = ba = b2 = 0;
(4) a2 = c, ab = ba = 0, b2 = c;
(5) a2 = ab = c, ba = 0, b2 = φc for some φ ∈ Z2 (i.e., b2 = 0 or b2 = c);
(6) a2 = b, a3 = c, a4 = 0, where all of the preceding algebras are mutually

non-isomorphic.
Since R = {a, 1 + a | a ∈ J(R)}, we have that R is commutative if and only

if so is J(R). Consider the case (2). Since J(R) is a vector space over Z2,
v = −v for all v ∈ J(R), entailing ab = −ba = ba. In the case (6), ab = ba
clearly. Thus R is commutative when J(R) satisfies one of the conditions (1),
(2), (3), (4), and (6). So it suffices to examine the condition (5) to complete
the proof.

Consider the ring R1 in Example 3.2(1). Recall J(R1) =
(

0 Z2 Z2

0 0 Z2

0 0 0

)

. Let

a = e12 + e23, b = e23, c = e13 ∈ J(R1). Then J(R1) satisfies the condition (5)
with J(R1)c = cJ(R1) = 0 and b2 = 0 = 0c.

Consider the ring R3 in Example 3.2(3) and recall J(R3) = 2Z4 +R2xR2 +
R2yR2. Let a = x̄− ȳ, b = x̄, c = 2̄ ∈ J(R3). Then J(R3) satisfies the condition
(5) with J(R3)c = cJ(R3) = 0 and b2 = c = 1c.

Consider the ring R4 in Example 3.2(4) and recall J(R4) = (x̄, ȳ). Let
a = x̄, b = ȳ, c = x̄2 ∈ J(R4). Then J(R4) satisfies the condition (5) with
J(R4)c = cJ(R4) = 0 and b2 = c = 1c.

Consider the ring R5 in Example 3.2(5) and recall J(R5) = (x̄, ȳ, 2̄). Let
a = x̄, b = ȳ, c = 2̄ ∈ J(R5). Then J(R5) satisfies the condition (5) with
J(R5)c = cJ(R5) = 0 and b2 = 0 = 0c.

Note that Ri is not isomorphic to Rj for i 6= j (where i, j ∈ {1, 2, 3, 4, 5})
by the arguments in [22, Example 7] and [21, Example 2]. �

In the following argument, the minimal noncommutative Abelian rings with-
out identity is completely determined, up to isomorphism. This result also
yields that a ring is a minimal noncommutative Abelian ring if and only if
it is a minimal noncommutative nilpotent ring. Therefore this result leads to
methods by which noncommutative Abelian or nil rings are constructed.
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Example 3.4. (1) E = {(aij) ∈ Un(A) | aij = 0 when i = j} is a nilpotent
ring for any ring A. E is commutative when n = 1, 2. While, E is noncommu-
tative when n ≥ 3 and A has an identity (as can be seen by e12e23 = e13 and
e23e12 = 0).

(2) According to Xue [21, Example 2], let T = Z4〈x, y〉/I where Z4〈x, y〉 is
the free algebra with noncommuting indeterminates x, y over Z4 and I is the
ideal of Z4〈x, y〉 generated by x3, y3, yx, x2 − xy, x2 − 2, y2 − 2, 2x, 2y. Then
J(T ) = (2, x, y) is noncommutative, and since abc = 0 for a, b, c ∈ {2, x, y}, we
get J(T )3 = 0.

(3) Let Z4〈x, y, z〉 be the free algebra with noncommuting indeterminates
x, y, z over Z4. Construct the following factor rings:

E1=Z4〈x, y, z〉/(x
2 − z, y2 − z, xy − z, 2x− z, 2y − z, yx, 2z, xz, yz, zx, zy, z2);

E2 = Z4〈x, y, z〉/(x
2 − z, y2 − z, xy − z, 2x− z, yx, 2y, 2z, xz, yz, zx, zy, z2);

E3 = Z4〈x, y, z〉/(x
2 − z, y2, xy − z, 2x− z, 2y− z, yx, 2z, xz, yz, zx, zy, z2);

E4 = Z4〈x, y, z〉/(x
2 − z, y2, xy − z, 2x− z, yx, 2y, 2z, xz, yz, zx, zy, z2).

Next define

Ri = {f ∈ Ei | f has a zero constant term}

for all i. Identify each element in Z4〈x, y, z〉 and its image in Ei for simplicity.
Note that z2 = 0, x4 = 0 (since x4 = z2 = 0), 2z = 0, x2 = xy = 2x = z, and
xz = yz = zx = zy = yx = 0 in any Ri. Since x2 − z = 0, x3 = x2x = zx = 0,
and similarly y3 = 0. Note that Ri = 〈x, y, z〉 = Z4x⊕Z4y⊕Z4z = {0, x, y, x+
y, z, z+ x, z+ y, z+ x+ y}. Note also that every Ri is a noncommutative ring.
y2 = z 6= 0 in Ri for i = 1, 2, and y2 = 0 in Ri for i = 3, 4; |x| = |y| = 4, |z| = 2
in Ri for i = 1, 3, and |x| = 4, |y| = |z| = 2 in Ri for i = 2, 4. These imply that
Ri’s are mutually non-isomorphic.

R2
i = {0, z} for all i and (Ri/R

2
i )

+ ∼= Z2 ⊕ Z2, where {0, x+R2
i }

∼= Z2 and
{0, y + R2

i }
∼= Z2. In any Ri, abc = (ab)c = zc = 0 (when ab 6= 0) for all

a, b, c ∈ {x, y, z}; hence R3
i = 0. Note char R = 4.

(4) Both (A A
0 0 ) and ( 0 A

0 A ) are non-Abelian rings for any ring A with identity.

In Theorem 3.3, R is a minimal noncommutative Abelian ring with identity,
then R is of order 16 and is isomorphic to D3(Z2), the second ring in [21,
Example 2], or the ring of all matrices of the form

(

a b
0 a2

)

over GF (22). We will
observe the class of minimal noncommutative Abelian rings without identity.
The following lemma was shown by Erickson [9] and Eldridge [8]. In [5], Bell
called a ring R periodic if for each x ∈ R, there exist distinct positive integers
n, m, depending on x, for which xn = xm. Finite rings are clearly periodic.

Lemma 3.5. (1) [9, Theorem 1] If R is a ring of order n > 1 and if n has

square free factorization, then R is a commutative ring.

(2) [9, Theorem 2] If p is a prime integer, then there exists a noncommutative

ring of order p2.
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(3) [8, Theorem] Let R be a finite ring of order m with identity. If m has a

cube free factorization, then R is a commutative ring.

(4) [5, Lemma 1(a)] If R is a periodic ring, then some power of x is an

idempotent for each x ∈ R.

(5) [2, Proposition 27.1] If I is a nil ideal in a ring R, then idempotents lift

modulo I.

One can say that any finite ring is a commutative ring when its order has a
square free factorization, by Lemma 3.5(1), (3).

Theorem 3.6. If R is a minimal noncommutative Abelian ring, then R is of

order 8 and is isomorphic to
(

0 Z2 Z2

0 0 Z2

0 0 0

)

, J(T ) in Example 3.4(2), or one of Ri’s

(i = 1, 2, 3, 4) in Example 3.4(3).

Proof. Let R be a minimal noncommutative Abelian ring. Erickson decided
that the order of a finite noncommutative ring must have a square factor, by
Lemma 3.5(1), (2). Furthermore Eldridge claimed that such a ring does not
have an identity, by Lemma 3.5(3). If R+ is cyclic, then R is commutative and
so R+ is not cyclic.

Assume |R| = 4, based on Lemma 3.5(2). If R is nilpotent (i.e., J(R) = R),
then there exists a basis {a, b} for R over Z2 such that a2 = b2 = ab = ba = 0
or a2 = b, a3 = 0, by [15, Theorem 2.3.3]. This implies that R is commutative,
a contradiction. If J(R) = 0, then R is commutative by the proof of Theorem
2.16. Consequently R is a non-nilpotent non-semiprimitive ring. Then we
must have |J(R)| = 2 and R/J(R) ∼= Z2. By Lemma 3.5(5), there exists an
idempotent e ∈ R such that a+J(R) = e+J(R) where a+J(R) is the identity
of R/J(R). Consequently we get R = {0, e, b, e+b}, letting J(R) = {0, b}. But
since R is Abelian, eb = be and so R is commutative, a contradiction.

Therefore the order of R must be larger than 4. Then |R| ≥ 8 by Lemma

3.5(1), but the existence of the Abelian ring
(

0 Z2 Z2

0 0 Z2

0 0 0

)

concludes |R| = 8. Thus

we can conclude that a minimal noncommutative Abelian ring must be of order
8. Since J(R) is an additive subgroup of R, J(R) is of order 2, 4, or 8.

Suppose |J(R)| = 4. Then the characteristic of J(R) is either 2 or 4. Assume
char J(R) = 4. Then there exists a nonzero x ∈ R with char x ≥ 3. This
yields char x = 4 since |J(R)| = 4, entailing J(R) = {0, x, 2x, 3x}. Assume
char J(R) = 2. Then, by [15, Theorem 2.3.3], there exists a basis {a, b} for
J(R) over Z2 such that a2 = b2 = ab = ba = 0 or a2 = b, a3 = 0. In
any case J(R) is a commutative ring. Note (R/J(R))+ ∼= Z2, say R/J(R) =
{0, a + J(R)}. Since R/J(R) is not nil, a + J(R) must be an identity of
R/J(R). By Lemma 3.5(5), there exists a nonzero idempotent e ∈ R such that
a + J(R) = e + J(R). Consequently we get R = {j, e + j | j ∈ J(R)}. But
since R is Abelian, ex = xe and ea = ae, eb = be. Then R is commutative since
J(R) is commutative. This is a contradiction. Thus |J(R)| 6= 4.

Suppose |J(R)| = 2 and J(R) = {0, a}. Then (R/J(R))+ is isomorphic to
either Z4 or Z2 ⊕ Z2 by the Fundamental Theorem of Finite Abelian Groups.
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Assume (R/J(R))+ ∼= Z4 and say R/J(R) = {0, x + J(R), 2x + J(R), 3x +
J(R)}. Then (2x + J(R))2 = 0 in R/J(R), and so the ideal of R gener-
ated by {2x} ∪ J(R) is nil. This yields 2x ∈ J(R), a contradiction. Assume
(R/J(R))+ ∼= Z2 ⊕ Z2. Since R/J(R) is not nil, z + J(R) is non-nilpotent for
some z+J(R) ∈ R/J(R). Then some power of z+J(R) is a nonzero idempotent
in R/J(R) by Lemma 3.5(4), say zm + J(R). By Lemma 3.5(5), there exists a
nonzero idempotent e ∈ R such that zm+J(R) = e+J(R). Consider the ideal
K of R generated by {e} ∪ J(R). If K = R, then R is commutative since R is
Abelian. This induces a contradiction, and so K $ R. Note R/K ∼= Z2 and
say R/K = {0, x+K}. Since the characteristic of R/J(R) is 2, 2x ∈ J(R) and
(R/J(R))+ ∼= {0, e}⊕{0, x}, entailing R = {0, e, x, e+x, a, a+e, a+x, a+e+x}.
If x + J(R) is nilpotent, then x is nilpotent. Moreover since e is central, the
subset {x} ∪ J(R) generates a nil ideal of R. This leads to x ∈ J(R), a con-
tradiction. Thus x+ J(R) is non-nilpotent in J(R); hence by Lemma 3.5(4,5),
there exists a nonzero idempotent f ∈ R such that xn + J(R) = f + J(R) for
some n ≥ 1. Here let n be the smallest such integer.

Assume e = f . Then e + J(R) = xn + J(R) and so e = xn or e = xn + a.
Moreover R/J(R) = {0, x + J(R), x2 + J(R), x3 + J(R)} and x4 + J(R) ∈
{x + J(R), x2 + J(R), x3 + J(R)}, since |R/J(R)| = 4 and x + J(R) is non-
nilpotent. We will show xa = ax. Then R is commutative since every element
of R is of the form xs or xs + a. Assume on the contrary that xa 6= ax. Say
xa = a, ax = 0. Then xka = a for all k ≥ 1. So if e = xn + a, then

0 = 0 + 0 = axn + a2 = a(xn + a) = ae = ea

= (xn + a)a = xna+ a2 = a+ 0 = a 6= 0,

a contradiction. Thus e = xn, and so we also get

0 6= a = xna = ea = ae = axn = 0,

a contradiction. The case of xa = 0, ax = a also induces a contradiction by a
similar method. Consequently ax = xa, a contradiction. Therefore e 6= f , and
this yields R = {0, e, f, e+f, a, a+e, a+f, a+e+f}. Whence R is commutative
since R is Abelian, a contradiction. Thus |J(R)| 6= 2.

These conclude that it suffices to argue only about the case when |J(R)| = 8.
Suppose J(R) = R. Then R is nilpotent, and |R| > |Rn| for any n ≥ 2. If
R2 = 0, then R is commutative and so R2 6= 0, entailing that |R2| = 2 or
|R2| = 4. If |R2| = 4, then |R/R2| = 2 and so there exists a generator a+ R2

for (R/R2)+. Then R is the ring generated by a by [15, Lemma 2.3.1], and
so R is commutative. This is a contradiction, and so |R2| = 2. If (R/R2)+

is cyclic, then R is also commutative by [15, Lemma 2.3.1]. Thus (R/R2)+

is not cyclic, leading to (R/R2)+ ∼= Z2 ⊕ Z2. Note (R2)+ ∼= Z2, and say
R2 = {0, c}. Clearly 2c = 0 and c2 = 0. Since (R/R2)+ ∼= Z2 ⊕ Z2, there
exist a, b ∈ R such that (R/R2)+ = {0, a + R2, b + R2, a + b + R2} and 2a ∈
R2, 2b ∈ R2. Then R = {0, a, b, a+ b, c, a + c, b + c, a + b + c}. Here assume
|a| = 4. Then 2a = c and ac = ca. If a2 6= 0, then a2 = c since a2 ∈ R2.
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Whence ca = (2a)a = 2a2 = 2c = 0 and this yields that a3 = a2a = ca = 0
when a2 is zero or not. A similar calculation gives b3 = 0 and bc = cb when
|b| = 4. Since R is noncommutative, we must have ab 6= ba and so either
ab = c, ba = 0 or ab = 0, ba = c. Consequently, if |R| = 8, then R3 = 0
since xyz = (xy)z = (2a)z = 2c = 0 or xyz = (xy)z = (2b)z = 2c = 0
(when xy, az, bz are all nonzero) for every x, y, z ∈ {a, b, c}. Thus we have the
following four cases:

|a| = |b| = 4, |c| = 2, a2 = b2 = ab = 2a = 2b = c,(1)

ba = ac = ca = bc = cb = c2 = 0;

|a| = 4, |b| = |c| = 2, a2 = b2 = ab = 2a = c,(2)

ba = ac = ca = bc = cb = c2 = 0;

|a| = |b| = 4, |c| = 2, a2 = ab = 2a = 2b = c,(3)

b2 = ba = ac = ca = bc = cb = c2 = 0;

|a| = 4, |b| = |c| = 2, a2 = ab = 2a = c,(4)

b2 = ba = ac = ca = bc = cb = c2 = 0.

Thus R is isomorphic to R1 in Example 3.4(3) for the case (1), R is isomorphic
to R2 in Example 3.4(3) for the case (2), R is isomorphic to R3 in Example
3.4(3) for the case (3), and R is isomorphic to R4 in Example 3.4(3) for the
case (4), through the correspondence a 7→ x, b 7→ y, c 7→ z.

Next assume that R is an algebra of dimension 3 over Z2. Then, by Kruse
and Price [15, Theorem 2.3.6], J(R) has a basis {a, b, c}, with Rc = cR = 0,
that one of the following conditions holds:

a2 = ab = ba = b2 = 0;(5)

a2 = b2 = 0, ab = −ba = c;(6)

a2 = c, ab = ba = b2 = 0;(7)

a2 = c, ab = ba = 0, b2 = c;(8)

a2 = ab = c, ba = 0, b2 = φc for some φ ∈ Z2;(9)

a2 = b, a3 = c, a4 = 0,(10)

where all of the preceding algebras are mutually non-isomorphic. However R is
commutative when R satisfies one of the conditions (5), (6), (7), (8), and (10).
So it suffices to concentrate on the condition (9). We next apply the proof of
Theorem 3.3.

Consider the ring R1 =
(

0 Z2 Z2

0 0 Z2

0 0 0

)

and let a = e12+e23, b = e23, c = e13 ∈ R1.

Then R1 satisfies the condition (9) with R1c = cR1 = 0 and b2 = 0 = 0c.
Next set R2 = J(T ) in Example 3.4(2) and let a = x̄− ȳ, b = x̄, c = 2̄. Then

R2 satisfies the condition (9) with R2c = cR2 = 0 and b2 = c.
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Compare R1 and R2. In R1, f = e12 + e23 and g = e12 + e13 + e23 are all
elements such that f2 = c = g2 and they are of index 3 of nilpotency. But
fg = gf = e13 6= 0. Thus R1 is not isomorphic to R2, noting that b2 = 0c in
R1 and b2 = 1c in R2. �

By the proof of Theorem 3.6, we can obtain the following corollary.

Corollary 3.7. If R is a minimal noncommutative nilpotent ring, then R is

of order 8 and is isomorphic to
(

0 Z2 Z2

0 0 Z2

0 0 0

)

, J(T ) in Example 3.4(2), or one of

Ri’s (i = 1, 2, 3, 4) in Example 3.4(3).

We get the following result by help of Theorem 3.6 and Corollary 3.7.

Corollary 3.8. A ring R is minimal noncommutative Abelian if and only if

R is a minimal noncommutative nilpotent ring.

A quick computation gives that a ring R is a minimal (commutative) nilpo-
tent ring then R is isomorphic to

(

0 Z2

0 0

)

. Note that 2Z4
∼=

(

0 Z2

0 0

)

.
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