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ABSTRACT. We propose a variational segmentation model based on statistical information of
intensities in an image. The model consists of both a local region-based energy and a global
region-based energy in order to handle misclassification which happens in a typical statistical
variational model with an assumption that an image is a mixture of two Gaussian distributions.
We find local ambiguous regions where misclassification might happen due to a small differ-
ence between two Gaussian distributions. Based on statistical information restricted to the local
ambiguous regions, we design a local region-based energy in order to reduce the misclassifi-
cation. We suggest an algorithm to avoid the difficulty of the Euler-Lagrange equations of the
proposed variational model.

1. INTRODUCTION

Segmentation has been widely studied in the field of image processing and computer vision.
It basically separates an image into several homogeneous regions according to a criterion. The
quality of segmentation is crucial in other fields of image analysis such as motion tracking and
image classification. Methods of segmentation are classified into two categories; one is the
boundary-based segmentation which uses gradient information of an image to detect abrupt
changes in the image and the other is the region-based segmentation which uses similarity
information of an image to separate the image into several regions.

As basic boundary-based segmentations, there are filters by Roberts, Prewitt, Sobel [1, 2],
and Canny [3]. These filters have a problem of irregularity of a curve which detects a boundary
of an object in an image. Recently based on active contours models [4], variational formula-
tions on deformable curves have been developed in order to handle the irregularity problem.
These models consider energy functionals which consist of smoothness and attraction of a
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curve. The energy for attraction of the curve commonly introduces an edge-detector func-
tion which makes a curve evolution converge at a boundary of an object as a minimizer of
the energy functional. More advanced methods have been suggested in geometric active con-
tours [5], geodesic active contours [6], and gradient vector flows [7]. With the help of the level
set method [8, 9], these methods are able to deal with topological change which is a problem
in the parametric deformable model [4]. However, there still remains a problem to capture
weak boundaries changed smoothly from strong boundaries because these methods depend on
edge-detector functions.

As region-based segmentations, there are thresholding, region growing [10], active contours
without edges [11], and region competition [12]. Whereas the gradient-based segmentation
uses local information on a deformable curve, the region-based segmentation uses global in-
formation of an image. In other words, an energy functional of the latter is formed by sta-
tistical information such as means and standard deviations of intensities on a region inside a
deformable curve and a region outside the curve. Region competition [12] has been a funda-
mental framework in the region-based segmentation with an assumption that a given image is a
mixture of two Gaussian distributions. Many region-based segmentations with the assumption
have a problem of misclassification due to a small difference between two Gaussian distribu-
tions. The misclassification easily happens when an object has various intensities inside the
boundary of the object or outside the boundary; see Figure 1.

Combinations of the boundary-based segmentation and the region-based segmentation have
been also studied. Geodesic active regions [13, 14] combines geodesic active contours [6] and
region competition [12] in order to segment a texture in an image. Region-aided geometric
snake [15] adds the region force term in the geodesic active contours [6]. The region force is
obtained from any region-based segmentation such as mean shift algorithm [16].

In this paper we propose a variational model based on statistical information of intensities
in an image. The model consists of both a global region-based energy and a local region-
based energy. The former roughly captures outlines of objects which we want to segment in
an image. The latter reduces misclassification which happens in a typical statistical variational
model with an assumption that the image is a mixture of two Gaussian distributions. We find
local ambiguous regions where the misclassification happens due to small difference between
two Gaussian distributions. Using statistical information restricted to the local ambiguous
regions, we design the local region-based energy in order to reduce misclassification. We
suggest an algorithm to avoid the difficulty of the Euler-Lagrange equations of the proposed
energy functional.

The outline of this paper is as follows. In Section 2, we review the region competition and
show what misclassification is in an image. In Section 3, we propose a statistical variational
model and suggest an algorithm for segmentation. In Section 4, we show examples and com-
ment numerical aspects of the algorithm. This paper is concluded in Section 5.
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2. REGION COMPETITION

Let Ω be a bounded closed subset of R2 and I: Ω ⊂ R2 → R be an image. A segmentation
problem is to partition the image into several subregions which are characterized by prescribed
properties. We assume that the image consists of two disjoint regions, i.e., Ω = RA ∪ RB

and intensities in the regions follow Gaussian distributions with probability density functions
(PDFs) P(I;αi), i ∈ {A,B}, where αi = (µi, σi) is a Gaussian parameter of a mean µi and
a standard deviation σi:

P(I(x);αi) =
1√
2πσi

exp

(
−(I(x)− µi)

2

2σi
2

)
.

Let Γ be the boundary separating two regions RA and RB and α = (αA, αB) be Gaussian
parameters of two regions. Many energy functionals in typical statistical variational mod-
els [12–14] contain an energy term

E(Γ, α) = −
∑

i∈{A,B}

∫
Ri

logP(I(x);αi)dx, (2.1)

which generates a region competition as the energy is decreased.
In order to find a minimizer of the energy functional (2.1), an algorithm which consists

of two alternating steps was used in [12]. In the first step, when a boundary Γ is fixed, the
functional has a minimum if αi = (µi, σi) is the Gaussian parameter of the region Ri:

µi =
1

|Ri|

∫
Ri

I(x)dx and σ2
i =

1

|Ri|

∫
Ri

(I(x)− µi)
2dx

for i ∈ {A,B}. In the second step, when α is fixed, the Euler-Lagrange equation with respect
to Γ is deduced and the gradient descent method is used. That is, the energy has a minimum if
Γ is a curve C that is a steady state solution of

∂C(x, t)

∂t
= F (x)n⃗, F (x) = logP(I(x);αA)− logP(I(x);αB), (2.2)

where n⃗ is the outward normal vector to the curve(We assume that RA is inside the curve C).
The evolution of the curve is generated by the sign of the force (2.2). The sign indicates that

a point on the curve is more likely included into one of two regions RA and RB . If F > 0 at a
point, then the curve at the point moves along n⃗. It means that the point belongs to the region
RA. If F < 0 at a point, on the other hand, the curve at the point moves along −n⃗ and the
point belongs to the region RB . In this way, all points on the boundary belong to one of two
regions. This process is called “region competition”.

Unfortunately the region competition process may cause a problem which we call “misclas-
sification”. In Figure 1-(a), a minimizer of the energy functional (2.1) clearly captures the cross
shape in the image. However, if an illumination is changed inside and outside the object in Fig-
ure 1-(c), a minimizer of the functional does not capture the cross shape. The reason is that
some points whose intensities are near an intersection of two Gaussian PDFs are classified into
a wrong region. That is, points whose intensities are near the intersection I∗ in Figure 1-(d)
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(a) (b)

(c) (d)

FIGURE 1. Red curves in (a) and (c) are minimizers of (2.1). Graphs in (b)
and (d) are Gaussian PDFs when (2.1) is minimized. If an object and its back-
ground have simple colors, a minimizer of (2.1) clearly finds the object in an
image. However, if an illumination is changed in the image, misclassification
may happen where intensities are near the intersection I∗ in (d).

are possibly misclassified in segmentation. We call the region which consists of such points as
“local ambiguous region”. In [12], in order to reduce misclassification, an energy functional
was constructed using an average probability inside a window around points in an image. The
algorithm to minimize the energy functional has a drawback that it is difficult to measure an
optimal size of an window to obtain proper segmentation. It is also hard to decide how many
seed points are needed in order to obtain computational efficiency. In this paper, we propose
a variational model which overcome those drawbacks. The main purpose of the model is to
handle misclassification in the local ambiguous regions.

3. STATISTICAL VARIATIONAL FORMULATION

3.1. Modeling of energy functional. Let Γ be a boundary separating two regions RA and RB

and α = (αA, αB) be Gaussian parameters of two regions. Figure 1 tells us that if a difference
of two Gaussian PDFs is large at a point, there is no misclassification when we classify the
point according to the difference of Gaussian PDFs. However if the difference is small at a
point, the classification of the point could be wrong. We define a set of such points as a local
ambiguous region depending on Gaussian parameter α:

D(α) = {x | H(fα(x)) = 1}, (3.1)
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(a) (b)

FIGURE 2. Two graphs in (a) are Gaussian PDFs on RA and RB . There are
three intervals [Imin, I0], [I1, I2], and [I3, Imax], where the difference of two
PDFs is less than ζ(α) in (3.2). The local ambiguous region D(α) in (b) is
a set of points x whose intensities I(x) lie in the intervals. Each connected
component in D(α) is painted with green color.

where H is the Heaviside function,

fα(x) ≡ ζ(α)− |P(I(x);αA)− P(I(x);αB)|, (3.2)

and ζ(α) will be determined in Section 4.1. In Figure 2, (a) shows two Gaussian PDFs and
three intervals [Imin, I0], [I1, I2], and [I3, Imax], where the difference of PDFs is less than ζ(α).
Here Imin and Imax are the smallest intensity and the largest intensity in the image. Then the
pixels whose intensities are in the intervals belong to the local ambiguous region. In (b), we
depict the local ambiguous regions for Figure 1-(c) with green color.

Now, we propose a variational model which reduces misclassification in the local ambiguous
region D(α):

E(Γ, α, αl) = −
∑

i∈{A,B}

[ ∫
Ri\D(α)

logP(I(x);αi)dx

+

∫
Ri∩D(α)

logP(I(x);αl
i)dx

]
,

(3.3)

where α=(αA, αB) and αl=(αl
A, α

l
B). For a simple explanation, we assume that D(α) is a

connected subset of Ω. In practice, we consider different parameters αl on each connected
component of D(α). The first term in (3.3) which we call the global region-based energy is the
same as one in the model (2.1) except that the energy is contributed in the region Ri \ D(α)
where a difference of two PDFs is large. In most cases, this term plays a dominant role to
segment an outline of objects in an image. The second term which we call the local region-
based energy is defined on the local ambiguous region Ri ∩ D(α) where the difference is
small. Whereas the global Gaussian parameter αi makes a misclassification in D(α), the local
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Gaussian parameter αl
i reduces the misclassification because αl

i is obtained on not a global
region RA or RB , but a local region RA ∩ D(α) or RB ∩ D(α).

In order to find Euler-Lagrange equations for each variable, we write the proposed energy
functional (3.3) using the function fα in (3.2):

E(Γ, α, αl) = −
∑

i∈{A,B}

∫
Ri

[
H(fα) logP(I(x);αl

i)

+
(
1−H(fα)

)
logP(I(x);αi)

]
dx.

First, we consider the minimization of the energy with respect to the boundary Γ. Fixing α and
αl, the Euler-Lagrange equation for Γ becomes

−
[
H(fα)

(
logP(I(x);αl

A)− logP(I(x);αl
B)
)

+
(
1−H(fα)

)(
logP(I(x);αA)− logP(I(x);αB)

)]
n⃗ = 0,

where x ∈ Γ. When the boundary Γ and α are fixed, the Euler-Lagrange equation for αl =
(αl

A, α
l
B) = (µl

A, σ
l
A, µ

l
B, σ

l
B) produces the Gaussian parameter for intensities in regions indi-

cated by H(fα):

µl
i =

∫
Ri

H(fα)I(x)dx∫
Ri

H(fα)dx

and (σl
i)
2
=

∫
Ri

H(fα)(I(x)− µl
i)
2dx∫

Ri

H(fα)dx

for i ∈ {A,B}.
Finally fixing the boundary Γ and αl, we consider the minimization of the energy with

respect to the parameter α = (µA, σA, µB, σB). The necessary condition ∂E
∂µk

= 0, k ∈
{A,B} gives the equations∑

i∈{A,B}

∫
Ri

H ′(fα)
∂fα
∂µk

(
logP(I(x);αi)− logP(I(x);αl

i)
)
dx

−
∫
Rk

(
1−H(fα)

)I(x)− µk

σ2
k

dx = 0.

(3.4)

The condition ∂E
∂σk

= 0, k ∈ {A,B} gives the equations∑
i∈{A,B}

∫
Ri

H ′(fα)
∂fα
∂σk

(
logP(I(x);αi)− logP(I(x);αl

i)
)
dx

−
∫
Rk

(
1−H(fα)

)(
− 1

σk
+

(I(x)− µk)
2

σ3
k

)
dx = 0.

(3.5)
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Unfortunately, solving the equations (3.4) and (3.5) is not possible and what is worse, the
parameter α is not relevant to Gaussian parameters on RA and RB . The main problem comes
from the fact that the local ambiguous region D(α) in (3.1) depends on the parameter α.

3.2. Modification of Euler-Lagrange equations. In this section, we propose an algorithm
to avoid the difficulty of Euler-Lagrange equations for α in (3.4) and (3.5). Since the diffi-
culty comes from the dependence of the local ambiguous region on α in the proposed energy
functional (3.3), to remove the dependence we regard D as a parameter in the functional

E(Γ,D, α, αl) = −
∑

i∈{A,B}

[ ∫
Ri\D

logP(I(x);αi)dx

+

∫
Ri∩D

logP(I(x);αl
i)dx

]
.

(3.6)

However, we do not drop the dependence of D on α; we use (3.6) to find Euler-Lagrange
equations with respect to α and D is determined by (3.1). Then we propose the following
procedure
a) Initialize a curve Γn, n = 0.
b) Find regions RA and RB separated by the curve Γn and compute global Gaussian parame-

ters αA and αB in each region:

µi =
1

|Ri|

∫
Ri

I(x)dx and σ2
i =

1

|Ri|

∫
Ri

(I(x)− µi)
2dx,

for i ∈ {A,B}.
c) Determine the local ambiguous region D(α) in (3.1).
d) Compute local Gaussian parameters αl

A and αl
B:

µl
i =

1

|Di|

∫
Di

I(x)dx and (σl
i)
2 =

1

|Di|

∫
Di

(I(x)− µl
i)
2dx,

where Di = Ri ∩ D(α) for i ∈ {A,B}.
e) Obtain the curve Γn+1 by solving the equation

−
[
H(fα)

(
logP(I(x);αl

A)− logP(I(x);αl
B)
)

+
(
1−H(fα)

)(
logP(I(x);αA)− logP(I(x);αB)

)]
n⃗ = 0.

(3.7)

f) If Γn+1 is not changed from Γn, we stop the procedure. Otherwise, set n = n + 1 and
repeat.

Note that the local ambiguous region D(α) usually has many disjoint connected components,
i.e., D(α) =

∪N
k=1Dk, Di ∩ Dj = ∅, i ̸= j; see Figure 2.

Strictly speaking, the algorithm solves neither the Euler-Lagrange equations in Section 3.1
nor the variational model (2.1) on three different regions RA, RB and D. However, it keeps
the main purpose of the proposed energy functional (3.3), which is to find the local ambiguous
regions depending on the global Gaussian parameter α and to use the local Gaussian parameter
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αl to reduce misclassification. In the proposed algorithm, the parameter α represents statistical
information on regions separated by the evolving curve Γ and the difficulty of Euler-Lagrange
equations for α is avoided.

3.3. Extension to multi-dimensional Gaussian PDFs. Our algorithm can be easily extended
to multi-dimensional Gaussian PDFs which are used in a color image. The multi-dimensional
Gaussian PDF is given by

P(I(x)) =
1

2π
d
2 |Σ|

1
2

exp

(
−1

2
(I(x)− µ)TΣ−1(I(x)− µ)

)
, (3.8)

where d is the number of channels and µ is the mean vector and Σ is the covariance matrix.
Basically dealing with the RGB color model, we compute three dimensional probability density
functions. If the channels are linearly dependent it is not possible to compute the PDF because
|Σ| = 0 and hence Σ is not invertible in (3.8). To overcome the difficulty, we examine the
correlation between channels to select independent channels. The correlation between two
channels X,Y is given by

ρXY =
Cov(X,Y )

σXσY
,

where Cov(X,Y ) is the covariance of X,Y and σX , σY are the standard deviations. If |ρXY |
is close to 1, X and Y are likely to be linearly dependent and if it is close to 0, they are almost
linearly independent. Therefore if the correlation is larger than a criterion, then we take the
average of two channels as one channel. Likewise we make a gray image if three channels are
almost linearly dependent. Then two Gaussian PDFs P(I(x);αA) and P(I(x);αB) use the
same channels.

4. NUMERICAL ASPECTS AND EXAMPLES

In this section, we raise numerical issues to solve (3.7) and show how to take a threshold
ζ(α) in (3.2).

4.1. Local ambiguous region. In order to determine the local ambiguous region D(α) in (3.1),
we need to determine a criterion ζ(α) in (3.2). The smaller the value ζ(α) is, the smaller the
region D(α) becomes and the more dominant a global parameter α is in finding a boundary of
an object in the proposed algorithm. Hence, the selection of ζ(α) is crucial in our algorithm
for segmentation.

Given a Gaussian PDF P(x) with a mean µ and η(0 ≤ η ≤ 1), we first find β such that∫ µ+β

µ−β
P(x)dx = η.

This means that the confidence interval of 100 × η% is [µ − β, µ + β]. Taking P(µ + β) as
a criterion, if P(x) < P(µ + β) at x ∈ Ω, then we may regard the point x as an uncertain
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point for classification. Based on this idea, we compute βA and βB for two Gaussian PDFs
P(I(x);αA) and P(I(x);αB), respectively, in the proposed algorithm. Then we take

ζ(αA, αB) = min{P(µA + βA;αA),P(µB + βB;αB)}.
We used η = 0.7 for all examples.

4.2. Evolution of the boundary. With the gradient descent method and the level set method, (3.7)
is formulated as

∂ϕ(x, t)

∂t
=
[
H(fα)

(
logP(I(x);αl

A)− logP(I(x);αl
B)
)

+
(
1−H(fα)

)(
logP(I(x);αA)− logP(I(x);αB)

)]
|∇ϕ(x, t)|,

(4.1)

where the zero level set of ϕ(x, t) is the evolving curve which separates two regions. Note that
ϕ is a signed distance function with being positive inside the curve. The equation (4.1) may be
solved numerically by the nonoscillatory scheme for space and the explicit Euler scheme for
time [17] with ϕn as an initial curve. The numerical scheme, however, cause a severe restriction
on the stability condition because the force is not bounded. Instead we find directly a steady
state solution for the equation when the Gaussian parameters α and αl are given. Since the
steady state solution satisfies

F |∇ϕ(x, t)| = 0

with F ,

F = H(fα)
(
logP(I(x);αl

A)− logP(I(x);αl
B)
)

+
(
1−H(fα)

)(
logP(I(x);αA)− logP(I(x);αB)

)
we simply take a step function

ϕ(x) =


1 if F (x) > 0,

−1 if F (x) < 0, for x ∈ Ω

0 if F (x) = 0,

and take the reinitialization process [18]. Then it becomes the solution ϕn+1.

4.3. Examples. In this section, we present several examples to illustrate our model and algo-
rithm. We have two synthetic images on the top in Figure 3. These images are expected to
have two modes, the object and the background. Note that two images have various intensities
around boundaries of objects by illumination. We select the initial curve manually for each
image as shown at the bottom in Figure 3. Figure 4 shows several iterates for two synthetic
images when we apply our algorithm. For each image, local ambiguous regions are depicted by
green color. In Figure 5 we compare our method with the region competition based on (2.1) and
the Chan-Vese model in [11], which are most popular among the region-based segmentations.
Figure 5-(a) is the results of two synthetic images when the region competition is applied, and
(b) and (c) account for our model and the Chan-Vese model, respectively. Both (a) and (c) give
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(a) (b)

FIGURE 3. Two synthetic images on the top and the initial curves at the bot-
tom are shown. These images have various intensities around boundaries of
objects by illumination.

wrong segmentation by passing though boundaries where illumination changes and these mis-
classification is inevitable, while our model gives exact boundary by reducing misclassification
in ambiguous region as shown in Figure 4.

We apply our method to the real image taken in a studio. Figure 6-(a) is the original im-
age where the object has various intensities inside the object as well as near its boundary, in
particular, the top. The top is illuminated and forms weak edge. Notice that both sides of the
object have highly concave parts. Thus the main problem for this image is to detect the weak
edge and highly concave boundary simultaneously. With the same initial curve in Figure 6-(b),
three models are applied; (c) is for the region competition, (d) and (e) are for our model and the
Chan-Vese model, respectively. Three models detect correctly highly concave boundaries on
both sides of the object. However, the region competition and Chan-Vese model fail to detect
the weak edge on the top where the curves pass through the boundary of the object. On the
other hand our model detects the weak edge correctly.

In Figure 7 there are three real images. Figure 7-(a) is a gray blurred noisy image, (b) is
a shaded color image, and (c) is taken from the seashore with a digital camera. For three
images we apply our method. In (d) numbers in the blurred noisy image are segmented without
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(a) (b)

FIGURE 4. Several iterates are shown for two synthetic images when our
method is applied. From the top to the bottom, n = 1, 2, 3, 4. For each image,
local ambiguous regions are depicted by green color.
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(a) (b) (c)

FIGURE 5. For two synthetic images, three models are applied. (a) is obtained
when the region competition is used and (b) is for our model and (c) is for the
Chan-Vese model. Notice that (a) and (c) fail to detect boundaries correctly.
On the other hand our model gives the correct boundary between the object
and the background.

corruption of noise. Alphabet letters are separated from the background in (e). (f) shows
segmentation between a boy and the sandy plain. The shadow near the boy is excluded.

5. CONCLUSIONS

In this paper we proposed a variational segmentation model based on statistical information
of intensities in an image. Since the global region-based energy model which uses the statistical
information in whole region causes misclassification, in order to reduce misclassifications, we
defined the local ambiguous region, where the difference of two Gaussian PDFs is small and
considered an energy using the local Gaussian parameter restricted to the local region. Then
we combined the local region-based energy with the global region-based energy. This model,
however, induces the difficulty in handling Euler-Lagrange equations. We thus proposed an
algorithm to avoid the difficulty. It consists of several steps to solve Euler-Lagrange equations;
the local ambiguous region as a parameter of the energy is determined explicitly after the global
Gaussian parameters are computed. With several examples we confirmed that our model and
the algorithm reduced misclassification and hence detected the boundary of the object when an
illumination is changed.
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(a) (b)

(c) (d) (e)

FIGURE 6. (a) is an image taken from a studio. It has weak boundary on
the top as well as highly concave shape on the sides of the object. An initial
curve(red line) is shown in (b). With this initial curve, three segmentation
models are applied. Different results are shown at the bottom. (c) is obtained
from the region competition, (d) is from our model, and (e) is from the Chan-
Vese model. Our method detects both weak edge and highly concave shape.
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(d) (e) (f)
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