References
- S. Baillet, A. Henrot, T. Takahashi, Convergence results for a semilinear problem and for a Stokes problem in a periodic geometry. Asymptotic Anal. 50, (2006), 325-337.
- C. Baiocchi, Su un problema di frontiera libera connesso a questioni di idraulica. Ann. Mat. Pura Appl. (4) 92 (1972), 107-127. https://doi.org/10.1007/BF02417940
- H. Brezis, D. Kinderlehrer and G. Stampacchia, Sur une nouvelle formulation du probleme de l'ecoulement a travers une digue. C. R. Acad. Sci. Paris Sr. A-B 287 (1978), no. 9, 711-714.
- B. Brighi, S. Guesmia, On elliptic boundary value problems of order 2m in cylindrical domain of large size. Adv. Math. Sci. Appl. 18(1), 2008, 237-250.
- B. Brighi, S. Guesmia, Asymptotic behavior of solutions of hyperbolic problems on a cylindrical domain. Disc. Cont. Dyn. Syst. Suppl. 2007, 160-169.
- M. Chipot, Elements of Nonlinear Analysis. Birkhauser Advanced Text, 2000.
- M. Chipot, goes to plus infinity. Birkhauser Advanced Text, 2002.
- M. Chipot, Elliptic Equations: An Introductory Course. Birkhauser Advanced Text, 2009.
- M. Chipot, On some anisotropic singular perturbation problems. Asymptotic Analysis, 55 (2007), 125-144.
- M. Chipot, Some Remarks on Anisotropic Singular Perturbation Problems. Proceedings of IUTAM Symposium on the relations of shell, plate, beam and 3D models, Tbilisi, Georgia, April 2007, Springer Edt., (2008), 91-100.
- M. Chipot, S. Guesmia, On the asymptotic behavior of elliptic, anisotropic singular perturbations problems. Comm. Pure Applied Anal., 8, 1, (2009), 179-194.
- M. Chipot, S. Guesmia, Corrector for some asymptotic problems. Proceedings of the Steklov Institue of Mathematics, Vol 270, (2010), 263-277. https://doi.org/10.1134/S0081543810030211
- M. Chipot, S. Guesmia, On some anisotropic, nonlocal, parabolic singular perturbations problems. Applicable Analysis, Vol. 90, No. 12, (2011), 1775-1789. https://doi.org/10.1080/00036811003627542
- M. Chipot, S. Guesmia, On a class of integro-differential problems. Comm. Pure Applied Analysis, 9, 5, (2010), 1249-1262. https://doi.org/10.3934/cpaa.2010.9.1249
- M. Chipot, S. Guesmia and A. Sengouga, Singular Perturbations of Some Nonlinear Problems. Journal of Mathematical Sciences, Vol 176, 6, (2011), 828-843. https://doi.org/10.1007/s10958-011-0439-y
- M. Chipot, S. Mardare, Asymptotic behaviour of the Stokes problem in cylinders becoming unbounded in one direction. J. Math. Pures Appl. 90, (2008), 133-159. https://doi.org/10.1016/j.matpur.2008.04.002
- M. Chipot, S. Mardare, On correctors for the Stokes problem in cylinders. Proceedings of the conference on nonlinear phenomena with energy dissipation, Chiba, November 2007
- P. Colli and all Edts, Gakuto International Series, Mathematical Sciences and Applications, Vol 29, Gakkotosho, (2008), 37-52.
- M. Chipot, A. Rougirel, On the asymptotic behaviour of the solution of elliptic problems in cylindrical domains becoming unbounded. Communications in Contemporary Mathematics, Vol 4, 1, (2002), 15-44. https://doi.org/10.1142/S0219199702000555
- M. Chipot, A. Rougirel, On the asymptotic behaviour of the solution of parabolic problems in cylindrical domains of large size in some directions. Discrete an Continuous Dynamical Systems, Series B, 1, (2001), 319-338. https://doi.org/10.3934/dcdsb.2001.1.319
- M. Chipot, A. Rougirel, Remarks on the asymptotic behaviour of the solution to parabolic problems in domains becoming unbounded. Nonlinear Analysis, Vol 47, (2001), 3-11. https://doi.org/10.1016/S0362-546X(01)00151-1
- M. Chipot, A. Rougirel, Local stability under changes of boundary conditions at a far away location. Proceedings of the Fourth European Conference on Elliptic and Parabolic Problems, Rolduc-Gaeta 2001, World Scientific, (2002), 52-65.
- M. Chipot, A. Rougirel, On the asymptotic behaviour of the eigenmodes for elliptic problems in domains becoming unbounded. Trans. Amer. Math. Soc. 360 (2008), 3579-3602. https://doi.org/10.1090/S0002-9947-08-04361-4
- M. Chipot, P. Roy and I. Shafrir, Asymptotics of eigenstates of elliptic problems with mixed boundary data on domains tending to infinity. Asymptotic Analysis 85, (2013), 199-227.
- M. Chipot, Y. Xie, On the asymptotic behaviour of the p-Laplace equation in cylinders becoming unbounded. Proceedings of International Conference: Nonlinear PDE's and their Applications, N. Kenmochi, M. Otani, S. Zheng Edts., Gakkotosho, (2004), 16-27.
- M. Chipot, Y. Xie, On the asymptotic behaviour of elliptic problems with periodic data. C. R. Acad. Sci. Paris, Ser. I 339, (2004), 477-482. https://doi.org/10.1016/j.crma.2004.09.007
- M. Chipot, Y. Xie, Elliptic problems with periodic data: an asymptotic analysis. Journ.Math. Pures et Appl., 85 (2006), 345-370. https://doi.org/10.1016/j.matpur.2005.07.002
- M. Chipot, Y. Xie, Asymptotic behaviour of nonlinear parabolic problems with periodic data. Progress in PDE and their applications, Vol 63, Nonlinear elliptic and parabolic problems: A special tribute to the work of H. Brezis, (2005), 147-156, Birkhauser.
- M. Chipot, Y. Xie, Some issues on the p-Laplace equation in cylindrical domains. Proceedings of the Steklov Institue of Mathematics, 261, (2008), 287-294. https://doi.org/10.1134/S0081543808020235
- M. Chipot, K. Yeressian, Exponential rates of convergence by an iteration technique. C. R. Acad. Sci. Paris, Ser. I 346, (2008), 21-26. https://doi.org/10.1016/j.crma.2007.12.004
- M. Chipot, K. Yeressian, On the asymptotic behavior of variational inequalities set in cylinders. DCDS, Series A, Vol 33, 11 & 12, (2013), 4875-4890. https://doi.org/10.3934/dcds.2013.33.4875
- M. Chipot, K. Yeressian, On Some Variational Inequalities in Unbounded Domains. Boll. del UMI, (9), V, (2012), 243-262.
- M. Chipot, K. Yeressian, Asymptotic behaviour of the solution to variational inequalities with joint constraints on its value and its gradient. Contemporary Mathematics 594, (2013), 137-154. https://doi.org/10.1090/conm/594/11797
- L.C. Evans, Partial differential equations. Graduate Studies in Mathematics 19, AMS, 1998.
- J.-L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires. Dunod-Gauthier-Villars, Paris, 1969.
- S. Guesmia, Some results on the asymptotic behavior for hyperbolic problems in cylindrical domains becoming unbounded. J. Math. Anal. Appl. 341(2), 2008, 1190-1212. https://doi.org/10.1016/j.jmaa.2007.11.001
- S. Guesmia, Asymptotic behavior of elliptic boundary-value problems with some small coefficients. Electron. J. Diff. Equ. 2008 (59), (2008), 1-13.
- S. Guesmia, Some convergence results for quasilinear parabolic boundary value problems in cylindrical domain of large size. Nonlinear Anal. 70(9), 2009, 3320-3331.
- S. Guesmia, Resultats sur l'analyse asymptotique des equations aux derivees partielles. Habilitation, Universite de Haute Alsace, France (2013).
- S. Guesmia, Large time and space size behaviour of the heat equation in non-cylindrical domains. Arch. Math., (2013), 101 (3), 293-299. https://doi.org/10.1007/s00013-013-0555-7
- S. Guesmia, A. Sengouga, Some singular perturbations results for semilinear hyperbolic problems. Discrete. Cont. Dyn. Syst. Ser. S, 5(3), 2012, 567-580.
- S. Guesmia, A. Sengouga, Anisotropic singular perturbations for hyperbolic problems. Appl. Math. Comput. 217 (22), (2011), 8983-8996. https://doi.org/10.1016/j.amc.2011.03.104
- D. Mugnai, A limit problem for degenerate quasilinear variational inequalities in cylinders. Recent trends in nonlinear partial differential equations. I. Evolution problems, Contemp. Math., 594, Amer. Math. Soc., Providence, RI, (2013), 281-293. https://doi.org/10.1090/conm/594/11795
- O. A. Oleinik and G. A. Yosifian, Boundary value problems for second order elliptic equations in unbounded domains and Saint-Venants principle. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 4, no. 2, (1977), 269-290.
- P. Roy, Some results in asymptotic analysis and nonlocal problems. Thesis University of Zurich, (2013).
- Y. Xie, On asymptotic problems in Cylinders and other mathematical issues. Thesis University of Zurich, (2006).
- K. Yeressian, Asymptotic Behavior of Elliptic Nonlocal Equations Set in Cylinders. To appear in Asymptotic Analysis.
- K. Yeressian, Spatial asymptotic behaviour of elliptic equations and variational inequalities. Thesis University of Zurich, (2010).
Cited by
- On The Asymptotic Behaviour of Some Problems of the Calculus of Variations vol.1, pp.2, 2014, https://doi.org/10.1007/bf03377383