DOI QR코드

DOI QR Code

Effects of Dietary Supplementation of Magnesium Hydrogen Phosphate (MgHPO4) as an Alternative Phosphorus Source on Growth and Feed Utilization of Juvenile Far Eastern Catfish (Silurus asotus)

  • Yoon, Tae-Hyun (College of Animal Life Sciences, Kangwon National University) ;
  • Lee, Dong-Hoon (Gyenoggi Province Maritime and Fisheries Research Institute) ;
  • Won, Seung-Gun (College of Animal Life Sciences, Kangwon National University) ;
  • Ra, Chang-Six (College of Animal Life Sciences, Kangwon National University) ;
  • Kim, Jeong-Dae (College of Animal Life Sciences, Kangwon National University)
  • 투고 : 2014.02.04
  • 심사 : 2014.04.10
  • 발행 : 2014.08.01

초록

The present study was conducted to investigate a supplemental effect of magnesium hydrogen phosphate (MHP, $MgHPO_4$) as an alternative phosphorus (P) source on growth and feed utilization of juvenile far eastern catfish (Silurus asotus) in comparison with three conventional P additives (monocalcium phosphate (MCP), dicalcium phosphate (DCP) and tricalcium phosphate [TCP]) as positive controls. A basal diet as a negative control was prepared without P supplementation and four supplemental P sources were added at the level of 2%. Five groups of 450 fish having mean body weight of 11.3 g following 24 h fasting after three week adaptation period were randomly distributed into each of 15 tanks (30 fish/tank). Fish were hand-fed to apparent satiety twice a day for 8 weeks. Fish fed MHP had weight gain (WG), protein efficiency ratio and specific growth rate comparable to those fed MCP. Fish fed MHP and MCP had feed efficiency (FE) significantly higher (p<0.05) than those fed DCP. Fish groups fed control and TCP showed the lower FE than the other groups which was significantly different (p<0.05) from those of fish fed the other diets. Survival rate was not significantly different (p>0.05) among treatments. Fish fed control had the lowest hematocrit, which was significantly different (p<0.05) from that of fish fed MHP. Fish fed MCP and MHP had plasma P higher (p<0.05) than fish fed the other diets. Relative efficiencies of MCP, DCP and TCP to MHP were found to be 100.5 and 101.3%, 92.0 and 91.6%, and 79.1 and 80.9% for WG and FE, respectively. P availability was determined to be 88.1%, 75.2%, 8.7%, and 90.9% for MCP, DCP, TCP, and MHP, respectively. Consequently, MHP recovered from wastewater stream showed that as an alternative P source its performance was comparative with MCP on growth and feed utilization of juvenile far eastern catfish.

키워드

참고문헌

  1. Andrews, J. W., T. Murai, and C. Campbell. 1973. Effects of dietary calcium and phosphorus on growth, food conversion, bone ash and hematocrit levels of catfish. J. Nutr. 103:766-771.
  2. AOAC. 1990. Official Methods of Analysis. Association of Official Analytical Chemists, Arlington, VA, USA. 1298 p.
  3. Auer, M. T., M. S. Kiesser, and R. P. Canale. 1986. Identification of critical nutrient levels through field verification of models for phosphorus and phytoplankton growth. Can. J. Fish. Aquat. Sci. 43:379-388. https://doi.org/10.1139/f86-048
  4. Avila, E. M., H. Tu, S. Basantes, and R. P. Ferraris. 2000. Dietary phosphate regulates intestinal transport and plasma concentrations of phosphate in rainbow trout. J. Comp. Physiol. 170B:210-209.
  5. Barham, W. T., G. L. Smit, and H. J. Schoonbee. 1980. The haematological assessment of bacterial infection in rainbow trout, Salmo gairdneri Richardson. J. Fish Biol. 17:275-281. https://doi.org/10.1111/j.1095-8649.1980.tb02761.x
  6. Beveridge, M. C. M. 1984. Cage and pen fish farming: carrying capacity models and environmental impact. FAO Fish. Tech. Pap. 255, 131.
  7. Bolin, D. W., R. P. King, and E. W. Klosrerman. 1952. A simplified method for the determination of chromic oxide ($Cr_{2}O_{3}$) when used as an inert substance. Science 116(3023):634-635. https://doi.org/10.1126/science.116.3023.634
  8. Brown, B. A. 1980. Routine hematology procedures. In: Hematology: Principles and Procedures. Lea and Febiger. Philadelphia, PA, USA. pp. 71-112.
  9. Brown, M. L., F. Jaramillo, Jr., and D. M. Gatlin, III. 1993. Dietary phosphorus requirement of juvenile sunshine bass, Morone chrysops ${\times}$ M. saxatilis. Aquaculture 113:355-363. https://doi.org/10.1016/0044-8486(93)90405-N
  10. Bureau, D. P. and C. Y. Cho. 1999. Phosphorus utilization by rainbow trout (Oncorhynchus mykiss): estimation of dissolved phosphorus waste output. Aquaculture 179:127-140. https://doi.org/10.1016/S0044-8486(99)00157-X
  11. Cho, S. H., S. M. Lee, B. H. Park, S. C. Ji, C. Y. Choi, J. H. Lee, C. Y. Kim, J. H. Lee, and S. Y. Oh. 2007. Effect of daily feeding ratio on growth and body composition of subadult olive flounder, Paralichthys olivaceus, fed an extruded diet during summer season. J. World Aquacult. Soc. 38:68-73. https://doi.org/10.1111/j.1749-7345.2006.00074.x
  12. Davis, D. A. and E. H. Robinson. 1987. Dietary phosphorus requirement of juvenile red drum Sciaenops ocellatus. J. World Aqucult. Soc. 18:129-136. https://doi.org/10.1111/j.1749-7345.1987.tb00431.x
  13. Dougall, D. S., L. C. Wood, III, L. W. Douglass, and J. H. Soares. 1996. Dietary phosphorus requirement of juvenile striped bass Morone saxatilis. J. World Aquacult. Soc. 27:82-91. https://doi.org/10.1111/j.1749-7345.1996.tb00597.x
  14. Duncan, D. B. 1955. Multiple range and multiple 'F'tests. Biometrics 11:1-42. https://doi.org/10.2307/3001478
  15. Ellsaesser, C. F. and L. W. Clem. 1986. Haematological and immunological changes in channel catfish stressed by handling and transport. J. Fish Biol. 28:511-521. https://doi.org/10.1111/j.1095-8649.1986.tb05187.x
  16. El-Sayed, Y. S., T. T. Saad, and S. M. El-Bahr. 2007. Acute intoxication of deltamethrin in monosex Nile tilapia, Oreochromis niloticus with special reference to the clinical, biochemical and haematological effects. Environ. Toxicol. Phamacol. 24:212-217. https://doi.org/10.1016/j.etap.2007.05.006
  17. Eya, J. C. and R. T. Lovell. 1997. Net absorption of dietary phosphorus from various inorganic sources and effect of fungal phytase on net absorption of plant phosphorus by channel catfish Ictalurus punctatus. J. World Aquacult. Soc. 28:386-391. https://doi.org/10.1111/j.1749-7345.1997.tb00285.x
  18. Giles, M. A., H. S. Majewski, and B. Hobden. 1984. Osmoregulatory and haematological responses of rainbow trout (Salmo gairdneri) to extended environmental acidification. Can. J. Fish. Aquat. Sci. 41:1686-1694. https://doi.org/10.1139/f84-207
  19. Hardy, R. W. and F. T. Barrows. 2002. Diet formulation and manufacture. In: Fish Nutrition (Eds. J. E. Halver and R. W. Hardy), 3rd ed. Academic Press, London, UK. pp. 505-600.
  20. Hernandez, A., S. Satoh, V. Kiron, and T. Watanabe. 2004. Phosphorus retention efficiency in rainbow trout fed diets with low fish meal and alternative protein ingredients. Fish. Sci. 70:580-586. https://doi.org/10.1111/j.1444-2906.2004.00844.x
  21. Hernandez, A., S. Satoh, and V. Kiron. 2005. Effect of monocalcium phosphate supplementation in a low fish meal diet for rainbow trout based on growth, feed utilization, and total phosphorus loading. Fish. Sci. 71:817-822. https://doi.org/10.1111/j.1444-2906.2005.01032.x
  22. Hrubec, T. C., J. L. Cardinale, and S. A. Smith. 2000. Hematology and plasma chemistry reference intervals for cultured tilapia (Oreochromis hybrid). Vet. Clin. Pathol. 29:7-12. https://doi.org/10.1111/j.1939-165X.2000.tb00389.x
  23. Hrubec, T. C., S. A. Smith, and J. L. Robertson. 2001. Age related changes in haematology and chemistry values of hybrid striped bass chrysops Morone saxatilis. Vet. Clin. Pathol. 30:8-15. https://doi.org/10.1111/j.1939-165X.2001.tb00249.x
  24. Iwama, G. K., G. L. Greer, and D. J. Randall. 1986. Changes in selected haematological parameters in juvenile Chinook salmon subjected to a bacterial challenge and a toxicant. J. Fish Biol. 28:563-572. https://doi.org/10.1111/j.1095-8649.1986.tb05193.x
  25. Kim, J. D. and K. H. Ahn. 1993. Effects of monocalcium phosphate supplementation on phosphorus discharge and growth of carp (Cyprinus carpio) grower. Asian Australas. J. Anim. Sci. 6:521-526. https://doi.org/10.5713/ajas.1993.521
  26. Kim, J. D., K. S. Kim, J. S. Song, J. Y. Lee, and K. S. Jeong. 1998. Optimum level of dietary monocalcium phosphate based on growth and phosphorus excretion of mirror carp, Cyprinus carpio. Aquaculture 161:337-344. https://doi.org/10.1016/S0044-8486(97)00281-0
  27. Kim, J. D., K. S. Kim, J. S. Song, K. S. Jeong, Y. B. Woo, N. J. Choi, and J. Y. Lee. 1996. Comparison of feces collection methods for determining apparent phosphorus digestibility of feed ingredients in growing mirror carp (Cyprinus carpio). Korean J. Anim. Nutr. Feed. 20:201-206.
  28. Kim, J. D., K. S. Kim, S. B. Lee, and K. S. Jeong. 1997. Nutrient and energy digestibilities of various feedstuffs fed to Israeli strain of growing common carp (Cyprinus carpio). J. Aquacult. 10:327-334.
  29. Kim, J. D., S. M. Tibbets, J. E. Milley, and S. P. Lall. 2006. Effect of the incorporation level of herring meal into test diet on apparent digestibility coefficients for protein and energy by juvenile haddock, Melanogrammus aeglefinus L. Aquaculture 258:479-486. https://doi.org/10.1016/j.aquaculture.2006.04.006
  30. KOSTAT (Statistics Korea). 2012. Fishery production survey report. http://kostat.go.kr Accessed February 16, 2012.
  31. Lall, S. P. 1991. Digestibility, metabolism and excretion of dietary phosphorus in fish. In: Nutritional Strategies and Aquaculture Wastes (Ed. C.B. Cowey and C. Y. Cho). University of Guelph, Ontario, Canada. pp. 21-36.
  32. Lee, D. H., S. R. Lim, C. S. Ra, and J. D. Kim. 2012. Effects of dietary garlic extracts on whole body amino acid and fatty acid composition, muscle free amino acid profiles and blood plasma changes in juvenile sterlet sturgeon, Acipenser ruthenus. Asian Australas. J. Anim. Sci. 25:1419-1429. https://doi.org/10.5713/ajas.2012.12184
  33. Lee, S. M., J. H. Lee, and K. D. Kim. 2003. Effect of dietary essential fatty acids on growth, body composition and blood chemistry of juvenile starry flounder (Platichthys stellatus). Aquaculture 225:269-281. https://doi.org/10.1016/S0044-8486(03)00295-3
  34. Liu, Y. H., S. Kumar, J. H. Kwag, J. H. Kim, J. D. Kim, and C. S. Ra. 2011. Recycle of electronically dissolved struvite as an alternative to enhance phosphate and nitrogen recovery from swine wasterwater. J. Hazard. Mater. 195:175-181. https://doi.org/10.1016/j.jhazmat.2011.08.022
  35. Lovell, R. T. 1978. Dietary phosphorus requirements of channel catfish. Trans. Am. Fish. Soc. 107:617-621. https://doi.org/10.1577/1548-8659(1978)107<617:DPROCC>2.0.CO;2
  36. Ma, K., C. Zhang, Q. Ai, Q. Duan, W. Xu, L. Zhang, Z. Luifu, and B. Tan. 2006. Dietary phosphorus requirement of large yellow croaker, Pseudosciaena crocea R. Aquaculture 251:346-353. https://doi.org/10.1016/j.aquaculture.2005.05.038
  37. Maynard, L. A. and J. K. Loosli. 1969. Animal Nutrition, 6th ed. McGraw-Hill, New York, USA. 613 p.
  38. McClatchey, K. D. 2002. Clinical Laboratory Medicine. Williams & Wilkins, Baltimore, MD, USA. pp. 833-839.
  39. Nwanna, L. C., I. A. Adebayo, and B. O. Omitoyin. 2009. Phosphorus requirements of African catfish, Clarias gariepinus, based on broken-line regression analysis methods. ScienceAsia 35:227-233. https://doi.org/10.2306/scienceasia1513-1874.2009.35.227
  40. Ogino, C., L. Takeuchi, H. Takeda, and T. Watanabe. 1979. Availability of dietary phosphorus in carp and rainbow trout. Bull. Jap. Soc. Sci. Fish. 45:1527-1532. https://doi.org/10.2331/suisan.45.1527
  41. Phromkunthong, W. and U. Udom. 2008. Available phosphorus requirement of sex-reversed red tilapia fed all-plant diets. Songklanakarin J. Sci. Technol. 30:7-16.
  42. Pimentel-Rodrigues, A. and A. Oliva-Teles. 2007. Phosphorus availability of inorganic phosphates and fish meal in European sea bass (Dicentrarchus labrax L.) juveniles. Aquaculture 267:300-307. https://doi.org/10.1016/j.aquaculture.2007.01.018
  43. Rahimnejad, S. and K. J. Lee. 2013. Dietary valine requirement of juvenile red sea bream Pagrus major. Aquaculture 416- 417:212-218. https://doi.org/10.1016/j.aquaculture.2013.09.026
  44. Rodehutscord, M. and E. Pfeffer. 1995. Requirement for phosphorus in rainbow trout (Oncorhynchus mykiss) growing from 50 to 200 g. Water Sci. Technol. 31:137-141.
  45. Roy, P. K. and S. P. Lall. 2003. Dietary phosphorus requirement of juvenile haddock (Melanogrammus aeglefinus L.). Aquaculture 221:451-468. https://doi.org/10.1016/S0044-8486(03)00065-6
  46. Sandnes, K., O. Lie, and R. Waagbo. 1988. Normal ranges of some blood chemistry parameters in adult farmed Atlantic salmon, Salmo salar. J. Fish Biol. 32:129-136. https://doi.org/10.1111/j.1095-8649.1988.tb05341.x
  47. Sarker, P. K., H. Fukada, and T. Masumoto. 2009. Phosphorus availability from inorganic phosphorus sources in yellowtail (Seriola quinqueradiata Termminck and Schlegel). Aquaculture 289:113-117. https://doi.org/10.1016/j.aquaculture.2009.01.006
  48. Satoh, S., A. Hernandez, T. Tokoro, Y. Morishita, V. Kiron, and T. Watanabe. 2003. Comparison of phosphorus retention efficiency between rainbow trout (Oncorhynchus mykiss) fed a commercial diet and a low fish meal based diet. Aquaculture 224:271-282. https://doi.org/10.1016/S0044-8486(03)00217-5
  49. Shu, L., P. Schneider, V. Jegatheesan, and J. Johson. 2006. An economical evaluation of phosphorus recovery as struvite from digester supernatant. Bioresour. Technol. 97:2211-2216. https://doi.org/10.1016/j.biortech.2005.11.005
  50. Sokal, R. R. and F. J. Rohlf. 1994. Nested analysis of variance. In: Biometry, 3rd ed. Freeman W. H., New York. pp. 272-342.
  51. Spannhof, L., D. Nasev, and H. L. Kreutzmann. 1979. Early recognition of metabolic disturbances in trout (Salmo gairdneri Rich.) stocks. Aquaculture 18:317-323. https://doi.org/10.1016/0044-8486(79)90035-8
  52. SPSS. Inc. 1999. SPSS Base 10.0 for Windows User's Guide. SPSS Inc., Chicago IL, USA.
  53. Suman, A. and W. D. Carey. 2006. Assessing the risk of surgery in patients with liver disease. Cleve. Clin. J. Med. 73:398-404. https://doi.org/10.3949/ccjm.73.4.398
  54. USEPA (US Environmental protection agency). 1996. Acid digestion of sediments, sludge, and solids, Method 3050B, Revision 2. http://www.epa.gov/epaoswer/hazwaste/test/3050b.pdf Accessed December, 1996.
  55. USGS (US Geological survey). 2013. Mineral commodity summaries. Digital Data Series. http://minerals.usgs.gov/ minerals/pubs/mcs/2013/mcs2013.pdf. Accessed January, 2013.
  56. V'azquez, G. R. and G. A. Guerrero. 2007. Characterization of blood cells and hematological parameters in Cichlasoma dimerus (Teleostei, Perciformes). Tissue Cell 39:151-160. https://doi.org/10.1016/j.tice.2007.02.004
  57. Vilema, J., J. Koskela, and K. Ruohonen. 2002. Growth, bone mineralization, and heat and low oxygen tolerance in European whitefish (Coregonnus lavaretus L.) fed with graded levels of phosphorus. Aquaculture 212:321-333. https://doi.org/10.1016/S0044-8486(02)00039-X
  58. Vielma, J. and S. P. Lall. 1998. Control ofphosphorus homeostasis of Atlantic salmon (Salmo sala) in fresh water. Fish Phosiol. Biochem. 19:83-93. https://doi.org/10.1023/A:1007757321695
  59. Wilson, R. P., E. H. Robinson, D. M. Gatlin, III and W. E. Poe. 1982. Dietary phosphorus requirement of channel catfish. J. Nutr. 112:1197-1202.
  60. Yan, Q., S. Xie, X. Zhu, W. Lei, and Y. Yang. 2007. Dietary methionine requirement for juvenile rockfish, Sebastes schlegeli. Aquacult. Nutr. 13:163-169. https://doi.org/10.1111/j.1365-2095.2007.00461.x

피인용 문헌

  1. A Novel Assembly Line Scheduling Algorithm Based on CE-PSO vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/685824
  2. Effect of a new phosphorus source, magnesium hydrogen phosphate (MHP) on growth, utilization of phosphorus, and physiological responses in carp Cyprinus carpio vol.19, pp.9, 2014, https://doi.org/10.1186/s41240-016-0038-4
  3. 잉어(Cyprinus carpio) 사료 내 돈 분뇨 유래 Magnesium Hydrogen Phosphate (MgHPO4)의 적정 첨가수준 및 인 요구량 vol.50, pp.2, 2014, https://doi.org/10.5657/kfas.2017.0146
  4. 육성 넙치(Paralichthys olivaceus) 사료 내 인 공급제의 첨가가 성장률, 사료이용효율, 혈액성상 및 어체 내 광물질 조성에 미치는 영향 vol.51, pp.2, 2018, https://doi.org/10.5657/kfas.2018.0157
  5. In Vivo Toxicity and In Vitro Solubility Assessment of Pre-Treated Struvite as a Potential Alternative Phosphorus Source in Animal Feed vol.9, pp.10, 2014, https://doi.org/10.3390/ani9100785