DOI QR코드

DOI QR Code

ON THE BOUND FOR THE SUM OF THE ABSOLUTE VALUE OF MÖBIUS FUNCTION

  • Kimy, Insuk (Department of Mathematical education, Wonkwang University) ;
  • Cho, Myung Hyun (Department of Mathematical education, Wonkwang University)
  • Received : 2014.05.09
  • Accepted : 2014.05.31
  • Published : 2014.06.25

Abstract

With the properties of Riemann zeta function, we find an asymptotic formula of the sum for the absolute value of M$\ddot{o}$bius function, $\sum_{n{\leq}x}{\mid}{\mu}(n){\mid}$, using Dirichlet inversion formula.

Keywords

References

  1. M. Eichler, The basis problem for modular forms and the traces of Hecke operators, Springer-Verlag, Lecture Notes in Math., 320 (1972), 75-151.
  2. H. Davenport, Multiplicative number theory, 3rd., Springer-Verlag, 2000.
  3. A. Ivic, The Riemann zeta-function, Wiley, 1985.
  4. H. Montgomery, Topics in multiplicative number theory, Springer-Verlag, 1971.
  5. A. Selberg, Contributions to the theory of the Riemann zeta function, Arch. Math. Naturbid. B 48 (1946), 89-155.
  6. A. Selberg An elementary proof of the prime number theorem, Ann. of Math. 50(2) (1949), 305-313.

Cited by

  1. ON THE SUM OF CERTAIN MULTIPLICATIVE FUNCTIONS vol.36, pp.3, 2014, https://doi.org/10.5831/HMJ.2014.36.3.689