DOI QR코드

DOI QR Code

WALLMAN SUBLATTICES AND QUASI-F COVERS

  • Lee, BongJu (Department of Mathematics Education, Kyungpook National University) ;
  • Kim, ChangIl (Department of Mathematics Education, Dankook University)
  • Received : 2014.01.08
  • Accepted : 2014.01.27
  • Published : 2014.06.25

Abstract

In this paper, we first will show that for any space X and any Wallman sublattice $\mathcal{A}$ of $\mathcal{R}(X)$ with $Z(X)^{\sharp}{\subseteq}\mathcal{A}$, (${\Phi}^{-1}_{\mathcal{A}}(X)$, ${\Phi}_{\mathcal{A}}$) is the minimal quasi-F cover of X if and only if (${\Phi}^{-1}_{\mathcal{A}}(X)$, ${\Phi}_{\mathcal{A}}$) is a quasi-F cover of X and $\mathcal{A}{\subseteq}\mathcal{Q}_X$. Using this, if X is a locally weakly Lindel$\ddot{o}$f space, the set {$\mathcal{A}|\mathcal{A}$ is a Wallman sublattice of $\mathcal{R}(X)$ with $Z(X)^{\sharp}{\subseteq}\mathcal{A}$ and ${\Phi}^{-1}_{\mathcal{A}}(X)$ is the minimal quasi-F cover of X}, when partially ordered by inclusion, has the minimal element $Z(X)^{\sharp}$ and the maximal element $\mathcal{Q}_X$. Finally, we will show that any Wallman sublattice $\mathcal{A}$ of $\mathcal{R}(X)$ with $Z(X)^{\sharp}{\subseteq}\mathcal{A}{\subseteq}\mathcal{Q}_X$, ${\Phi}_{\mathcal{A}_X}:{\Phi}^{-1}_{\mathcal{A}}(X){\rightarrow}X$ is $z^{\sharp}$-irreducible if and only if $\mathcal{A}=\mathcal{Q}_X$.

Keywords

References

  1. J. Adamek, H. Herrilich, and G. E. Strecker, Abstract and concrete categories, John Wiley and Sons Inc. New York 1990.
  2. B. Banaschewski, Projective covers in categories of topological spaces and topo-logical algebra, Proc. Kanpur Topology Conf. 1968, Academic Press, New York, (1971), 63-91.
  3. F. Dashiell, A. W. Hager, and M. Henriksen, Order-Cauchy completions of rings and vector lattices of continuous functions, Canad. J. Math. 32 (1980), 657-685. https://doi.org/10.4153/CJM-1980-052-0
  4. L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, New York, 1960.
  5. A. M. Gleason, Projective topological spaces, Illinois J. Math. 2 (1958).
  6. M. Henriksen, J. Vermeer, and R. G.Woods, Quasi F-covers of Tychonoff spaces, Trans. Amer. Math. Soc. 303 (1987), 779-804.
  7. M. Henriksen, J. Vermeer, and R. G.Woods, Wallman covers of compact spaces, Dissertationes Math. 280 (1989), 5-31.
  8. M. Henriksen and R. G. Woods, Cozero complemented spaces; When the space of minimal prime ideals of a C(X) is compact, Topology Appl. 141 (2004), 147-170. https://doi.org/10.1016/j.topol.2003.12.004
  9. S. Iliadis, Absolutes of Hausdorff spaces, Sov. Math. Dokl. 2 (1963), 295-298.
  10. C. I. Kim, Minimal covers and filter spaces, Topology Appl. 72 (1996), 31-37. https://doi.org/10.1016/0166-8641(96)00009-0
  11. C. I. Kim, Wallman covers and quasi-F covers, J. Korean Soc. Math. Educ. Ser. B, 20 (2013), 103-108. https://doi.org/10.7468/jksmeb.2013.20.2.103
  12. J. Porter and R. G. Woods, Extensions and Absolutes of Hausdorff spaces, Springer, Berlin, 1988.
  13. J. Vermeer, The smallest basically disconnected preimege of a space, Topology Appl. 17 (1984), 217-232. https://doi.org/10.1016/0166-8641(84)90043-9

Cited by

  1. WALLMAN COVERS AND STONE-ČECH COMPACTIFICATIONS OF CLOZ COVERS vol.37, pp.3, 2015, https://doi.org/10.5831/HMJ.2015.37.3.287