DOI QR코드

DOI QR Code

Effects of Increased CO2 and Temperature on the Growth of Four Diatom Species (Chaetoceros debilis, Chaetoceros didymus, Skeletonema costatum and Thalassiosira nordenskioeldii) in Laboratory Experiments

  • Hyun, Bonggil (Ballast Water Center, Korea Institute of Ocean Science & Technology) ;
  • Choi, Keun-Hyung (Ballast Water Center, Korea Institute of Ocean Science & Technology) ;
  • Jang, Pung-Guk (Ballast Water Center, Korea Institute of Ocean Science & Technology) ;
  • Jang, Min-Chul (Ballast Water Center, Korea Institute of Ocean Science & Technology) ;
  • Lee, Woo-Jin (Ballast Water Center, Korea Institute of Ocean Science & Technology) ;
  • Moon, Chang-Ho (Department of Oceanography, Pukyung National University) ;
  • Shin, Kyoungsoon (Ballast Water Center, Korea Institute of Ocean Science & Technology)
  • Received : 2013.12.18
  • Accepted : 2014.04.09
  • Published : 2014.06.30

Abstract

We examined the combined impacts of future increases of $CO_2$ and temperature on the growth of four marine diatoms (Skeletonema costatum, Chaetoceros debilis, Chaetoceros didymus, Thalassiosira nordenskioeldii). The four strains were incubated under four different conditions: present ($pCO_2$: 400ppm, temperature: $20^{\circ}C$), acidification ($pCO_2$: 1000ppm, temperature: $20^{\circ}C$), global warming ($pCO_2$: 400ppm, temperature: $25^{\circ}C$), and greenhouse ($pCO_2$: 1000ppm, temperature: $25^{\circ}C$) conditions. Under the condition of higher temperatures, growth of S. costatum was suppressed, while C. debilis showed enhanced growth. Both C. didymus and T. nodenskioldii showed similar growth rates under current and elevated temperature. None of the four species appeared affected in their cell growth by elevated $CO_2$ concentrations. Chetoceros spp. showed increase of pH per unit fluorescence under elevated $CO_2$ concentrations, but no difference in pH from that under current conditions was observed for either S. costatum or T. nodenskioeldii, implying that Chetoceros spp. can take up more $CO_2$ per cell than the other two diatoms. Our results of cell growth and pH change per unit fluorescence suggest that both C. debilis and C. didymus are better adapted to future oceanic conditions of rising water temperature and $CO_2$ than are S. costatum and T. nodenskioeldii.

Keywords

References

  1. Alley, R. B., Berntsen, T., Bindoff, N. L., Chen, Z., and others, 2007, Summary for policymakers, In: Solomon S, D Qin, M Manning, Z Chen and others (eds) Climate change 2007: The physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York.
  2. Baek, S. H., Kim, Y. O., 2010, The study of summer season in Jinhae Bay-Short-term changes of community structure and horizontal distribution characteristics of phytoplankton, Kor. J. Environ. Biol., 28(3), 115-124 [in Korean].
  3. Burkhardt, S., Amoroso, G., Riebesell, U., Sultemeyer, D., 2001, $CO_{2}$ and $HCO_{3}$- uptake in marine diatoms acclimated to different $CO_{2}$ concentrations, Limnol. Oceanogr., 46, 1378-1391. https://doi.org/10.4319/lo.2001.46.6.1378
  4. Caldeira, K., Wickett, M.E., 2003, Anthropogenic carbon and ocean pH, Nature, 425:365. https://doi.org/10.1038/425365a
  5. Chen, X., Gao, K., 2003, Effect of $CO_{2}$ concentrations on the activity of photosynthetic $CO_{2}$ fixation and Extracellular carbonic anhydrase in the marine, Chi. Sci. Bull., 48(23), 2616-2620. https://doi.org/10.1360/03wc0084
  6. Choi J. K., Lee, E. H., Noh, J. H., Huh, S. H., 1997, The study on the phytoplankton bloom and primary productivity in lake Shihwa and adjacent coastal areas, J. Kor. Soc. Oceanogr., 2(2), 78-86 [in Korean].
  7. Durbin, E. G., 1974, Studies on the autecology of the marine diatom Thalassiosira nordenskioeldii Cleve. 1. The influence of day-length, light intensity and temperature on growth, J. Phycol., 10, 220-225.
  8. Egge, J. K., Thingstad, T. F., Larsen, A., Engel, A.; Wohlers, J., Bellerby, R.G.J., Riebesell, U., 2009, Primary production during nutrient-induced blooms at elevated $CO_{2}$ concentrations, Biogeosciences, 6, 877-885. https://doi.org/10.5194/bg-6-877-2009
  9. Engel, A., Zondervan, I., Aerts, K., Beaufort, L., Benthien, A., Chou, L., Delille, B., Gattuso, J. P., Harlay, J., Heemann, C., Hoffmann, L., Jacquet, S., Nejstgaard, J., Pizay, M. D., Newall, E.R., Schneider, U., Terbrueggen, A., Riebesell, U., 2005, Testing the direct effect of $CO_{2}$ concentration on a bloom of the coccolithophorid Emiliania Huxleyi in mesocosm experiments, Limnol. Oceanogr., 50(2), 493-507. https://doi.org/10.4319/lo.2005.50.2.0493
  10. Feng, Y. Y., Hare, C. E., Leblanc, K., Rose, J. M., Zhang, Y. H., DiTullio, G. R., Lee, P. A., Wilhelm, S. W., Rowe, J. M., Sun, J., Nemcek, N., Gueguen, C., Passow, U., Benner, I., Brown, C., Hutchins, D. A., 2009, Effects of increased p$CO_{2}$ and temperature on the North Atlantic spring bloom, I. The phytoplankton community and biogeochemical response, Mar. Ecol. Prog. Ser., 388, 13-25. https://doi.org/10.3354/meps08133
  11. Fu, F. X., Zhang, Y., Warner, M. E., Feng, Y., Sun, J., Hutchins, D. A., 2008, A comparison of future increased $CO_{2}$ and temperature effects on sympatric Heterosigma akashiwo and Prorocentrum minimum, Harmful algae, 7, 76-90. https://doi.org/10.1016/j.hal.2007.05.006
  12. Fu, F. X., Warner, M. E., Zhang, Y., Feng, Y., Hutchins, D. A., 2007, Effects of increased temperature and $CO_{2}$ on photosynthesis, growth and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria), J. Phycol., 43, 485-496. https://doi.org/10.1111/j.1529-8817.2007.00355.x
  13. Gao, K., Helbling, E. W., Hader, D. P., Hutchins, D. A., 2012, Response of marine primary producers to interactions between ocean acidification, solar radiation, and warming, Mar. Ecol. Prog. Ser., 470, 167-189. https://doi.org/10.3354/meps10043
  14. Giordano, M., Beardall, J., Raven, J. A., 2005, $CO_{2}$ concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution, Annual Review of Plant Biol., 56, 99-131. https://doi.org/10.1146/annurev.arplant.56.032604.144052
  15. Goldman, J. C., 1999, Inorganic carbon availability and the growth of large marine diatoms, Mar. Ecol. Prog. Ser., 180, 81-91. https://doi.org/10.3354/meps180081
  16. Guiry, M. D. Guiry, G.M., 2012, AlgaeBase. World- wide electronic publication, National University of Ireland, Galway. http://www.algaebase. org.
  17. Hitchcock, G. L., 1980, Influence of temperature on the growth rate of Skeletonema costatum in response to variations in daily light intensity, Mar. Biol., 57, 261-269. https://doi.org/10.1007/BF00387569
  18. Hu, H., Gao, K., 2008, Impact of $CO_{2}$ enrichment on growth and photosynthesis in freshwater and marine diatom, Chi. J. Oceanogr. Limnol., 26(4), 407-414. https://doi.org/10.1007/s00343-008-0407-7
  19. Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., and others (eds)., 2001, Climate change 2001: the scientific basis, Cambridge University Press, Cambridge.
  20. Huertas, I. E., Monica, R., Lopez-Rodas, V., Costas, E., 2011, Warming will affect phytoplankton differently: evidence through a mechanistic approach. Proceedings of the Royal Society B, 278, 3534-3543. https://doi.org/10.1098/rspb.2011.0160
  21. IPCC Fourth Assessment Report 2007, Climate Change: The Physical Science Basis; Intergovernmental Panel on Climate Change; edited by: Solomon, S., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., Miller, H. L., Cambridge University Press, New York.
  22. Karentz, D., Smayda, T. J., 1984, Temperature and seasonal occurrence patterns of 30 dominant phytoplankton species in Narragansett Bay over a 22-year period (1959-1980), Mar. Ecol. Prog. Ser., 18, 277-293. https://doi.org/10.3354/meps018277
  23. Kim, J. M., Lee, K., Shin, K., Kang, J. H., Lee, H. W., Kim, M., Jang, P. G., Jang, M.C., 2006, The effect of seawater $CO_{2}$ concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment, Limnol. Oceanogr., 51, 1629- 1636. https://doi.org/10.4319/lo.2006.51.4.1629
  24. Kim, J. M., Lee, K., Yang, E. J., Shin, K., Noh, J. H., Park, K. T., Hyun, B., Jeong, H. J., Kim, J. H., Kim, K. Y., Kim, M., Kim, H. C., Jang, P.G., Jang, M. C., 2010, Enhanced production of oceanic dimethylsulfide resulting from $CO_{2}$-induced grazing activity in high $CO_{2}$ world. Environ, Sci. Technol., 44(21), 8140-8143. https://doi.org/10.1021/es102028k
  25. Matsuda, U., Hara, T., Colman, B., 2001, Regulation of the induction of bicarbonate uptake by dissolved $CO_{2}$ in the marine diatom Phaeodactylum tricornutum. Plant Cell Environ., 24, 611-620. https://doi.org/10.1046/j.1365-3040.2001.00702.x
  26. Montagnes, D. J. S., Franklin, D.J., 2001, Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: Reconsidering some paradigms. Limnol. Oceanogr., 46(8), 2008-2018. https://doi.org/10.4319/lo.2001.46.8.2008
  27. Oh, S. J., Lee, J. S., Park, J. S., Noh, I. H., Yoon, Y. H., 2008, Environmental factors on the succession of phytoplankton community in Jinju Bay, Korea, J. Kor. Soc. Mar. Environ. Engin., 11(2), 98-104 [in Korean].
  28. Park, J. S., Yoon, Y. H., Oh, S. J., 2009, Variational characteristics of phytoplankton community in the mouth parts of Gamak Bay, Southern Korea, Kor. J. Environ. Biol., 27(2), 205-215 [in Korean].
  29. Popovich, C. A., Gayoso, A. M., 1999, Effects of irradiance and temperature on the growth rate of Thalassiosira curviseriata Takano (Bacillariophyceae), a bloom diatom in Bahia Blanca estuary (Argentina), J. Plank. Res., 21(6), 1101-1110. https://doi.org/10.1093/plankt/21.6.1101
  30. Riebesell, U., 2004. Effects of $CO_{2}$ enrichment on marine phytoplankton. J. Oceanogr.. 60, 719-729. https://doi.org/10.1007/s10872-004-5764-z
  31. Rost, B., Riebesell, U., Burkhardt, S., Sultemeyer, D., 2003, Carbon acquisition of bloom-forming marine phytoplankton. Limnol. Oceanogr., 48, 55-67. https://doi.org/10.4319/lo.2003.48.1.0055
  32. Sarno, D., Kooistra, W. H. C. F., Balzano, S., Hargraves, P.E., Zingone, A., 2007, Diversity in the genus Skeletonema (BACILLARIOPHYCEAE): III. Phylogenetic position and morphological variability of Skeletonema costatum and Skeletonema grevillei, with the description of Skeletonema ardens sp. NOV.1, J. Phycol., 43, 156-170. https://doi.org/10.1111/j.1529-8817.2006.00305.x
  33. Schippers, P., Lurling, M., Scheffer, M., 2004, Increase of atmospheric $CO_{2}$ promotes phytoplankton productivity, Ecology Letters, 7, 446-451. https://doi.org/10.1111/j.1461-0248.2004.00597.x
  34. Shikata, T., Nagasoe, S., Matsubara, T., Yoshikawa, S., Yamasaki, Y., Shimasaki, Y., Oshima, Y., Jenkinson, I.R., Honjo, T., 2008, Factors influencing the initiation of blooms of the raphidophyte Heterosigma akashiwo and the diatom Skeletonema costatum in a port in Japan, Limnol. Oceanogr., 53(6), 2503-2518. https://doi.org/10.4319/lo.2008.53.6.2503
  35. Tortell, P. D., Ditullio, G. R., Sigman, D. M., Morel, F. M. M., 2002, $CO_{2}$ effects on taxonomic composition and nurtrient utilization in an equatorial Pacific phytoplankton assemblage, Mar. Ecol. Prog. Ser., 236, 37-43. https://doi.org/10.3354/meps236037
  36. Tortell, P. D., Payne, C. D., Li, Y., Trimborn, S., Rost, B., Smith, W. O., Riesselman, C., Dunbar, R. B., Sedwick, P., Ditullio, G.R., 2008, $CO_{2}$ sensitivity of Southern Ocean phytoplankton, Geophysical Research Letters, 35, L04605, doi:10.1029/2007GL032583.
  37. Wu, Y., Gao, K., Riebesell, U., 2010, $CO_{2}$-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum, Biogeosciences, 7, 2915-2923. https://doi.org/10.5194/bg-7-2915-2010
  38. Yoder, J. A., 1979, Effect of temperature on light-limited growth and chemical composition of Skeletonema costaturm (Bacillariophyceae). J. Phycol., 15, 362-370. https://doi.org/10.1111/j.1529-8817.1979.tb04397.x

Cited by

  1. Enzyme activity highlights the importance of the oxidative pentose phosphate pathway in lipid accumulation and growth of Phaeodactylum tricornutum under CO2 concentration vol.8, pp.1, 2015, https://doi.org/10.1186/s13068-015-0262-7
  2. Individual and interactive effects of ocean acidification, global warming, and UV radiation on phytoplankton pp.1573-5176, 2018, https://doi.org/10.1007/s10811-017-1329-6