DOI QR코드

DOI QR Code

Evaluation of the Speckle Noise in Optical Scanning Holography

광 스캐닝 홀로그래피와 스펙클 잡음에 의한 오염도 평가

  • Kim, You Seok (Department of Optical Engineering, Sejong University) ;
  • Kim, Taegeun (Department of Optical Engineering, Sejong University)
  • Received : 2014.04.28
  • Accepted : 2014.05.26
  • Published : 2014.06.25

Abstract

In this paper we record the complex hologram of a real object with optical scanning holography (OSH). We reconstruct the complex hologram using a numerical process, and then we evaluate the degree of contamination by speckle noise between the reconstruction of the complex hologram and the image captured by a CCD camera. We use the contrast of the speckle pattern for quantitative evaluation.

본 논문에서는 광 스캐닝 홀로그래피 기술을 이용하여 실제 물체의 복소 홀로그램 정보를 스펙클 잡음 없이 촬영하였다. 촬영된 복소 홀로그램 정보를 수치적인 방법으로 복원한 뒤 결맞음 광원과 CCD 카메라를 이용하여 촬영한 실제 물체의 영상과 비교하여 스펙클 잡음에 의한 오염도를 평가하였다. 스펙클 잡음에 의한 오염도를 정량적으로 평가하기 위하여 두 영상의 스펙클 패턴의 대비 수치를 이용하였다.

Keywords

References

  1. J. Berrang, "Television transmission of holograms using a narrow-band video signal," Bell Syst. Tech. J. 49, 879-887 (1970). https://doi.org/10.1002/j.1538-7305.1970.tb01805.x
  2. C. Burckhardt and L. Enloe, "Television transmission of holograms with reduced resolution requirements on the camera tube," Bell Syst. Tech. J. 45, 1529-1535 (1969).
  3. T. C. Poon, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, "Real-time two-dimensional holographic imaging by using an electron-beam-addressed spatial light modulator," Opt. Lett. 18, 63-5 (1993). https://doi.org/10.1364/OL.18.000063
  4. T.-C. Poon, "Optical scanning holography-A review of recent progress," J. Opt. Soc. Korea 13, 406-415 (2009). https://doi.org/10.3807/JOSK.2009.13.4.406
  5. P. St. Hilaire, S. A. Benton, and M. Lucente, "Synthetic aperture holography: A novel approach to three-dimensional displays," J. Opt. Soc. Am. A 9, 1969 (1992). https://doi.org/10.1364/JOSAA.9.001969
  6. M. Stanley, "3D electronic holography display system using a 100-megapixel spatial light modulator," Proc. SPIE 5249, 297-308 (2004).
  7. D. Gabor, "Holography," Proc. IEEE 60, 1948-1971 (1972).
  8. D. Gabor, "A new microscopic principle," Nature 161, 777 (1948). https://doi.org/10.1038/161777a0
  9. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268 (1997).
  10. O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, "Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram," Appl. Opt. 41, 6187-6192 (2002). https://doi.org/10.1364/AO.41.006187
  11. A. Uzan, Y. Rivenson, and A. Stern, "Speckle denoising in digital holography by nonlocal means filtering," Appl. Opt. 52, A195-200 (2013). https://doi.org/10.1364/AO.52.00A195
  12. J. Maycock, B. M. Hennelly, J. B. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. J. Naughton, "Reduction of speckle in digital holography by discrete Fourier filtering," J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 24, 1617-1622 (2007). https://doi.org/10.1364/JOSAA.24.001617
  13. V. Bianco, M. Paturzo, P. Memmolo, A. Finizio, P. Ferraro, and B. Javidi, "Random resampling masks: A non-Bayesian one-shot strategy for noise reduction in digital holography," Opt. Lett. 38, 619-621 (2013). https://doi.org/10.1364/OL.38.000619
  14. C. Remmersmann, S. Sturwald, B. Kemper, P. Langehanenberg, and G. von Bally, "Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging," Appl. Opt. 48, 1463-1472 (2009). https://doi.org/10.1364/AO.48.001463
  15. P. Langehanenberg, G. von Bally, and B. Kemper, "Application of partially coherent light in live cell imaging with digital holographic microscopy," J. Mod. Opt. 57, 709-717 (2010). https://doi.org/10.1080/09500341003605411
  16. T. Nomura, M. Okamura, E. Nitanai, and T. Numata, "Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths," Appl. Opt. 47, D38-D43 (2008). https://doi.org/10.1364/AO.47.000D38
  17. M. K. Kim, "Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography," Opt. Express 7, 305-10 (2000). https://doi.org/10.1364/OE.7.000305
  18. C. Quan, X. Kang, and C. J. Tay, "Speckle noise reduction in digital holography by multiple holograms," Opt. Eng. 46, 115801 (2007). https://doi.org/10.1117/1.2802060
  19. Y. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, "Speckle-field digital holographic microscopy," Opt. Express 17, 12285-12292 (2009). https://doi.org/10.1364/OE.17.012285
  20. F. Pan, W. Xiao, S. Liu, and L. Rong, "Coherent noise reduction in digital holographic microscopy by laterally shifting camera," Opt. Commun. 292, 68-72 (2013). https://doi.org/10.1016/j.optcom.2012.11.091
  21. T. Kozacki and R. Jozwicki, "Digital reconstruction of a hologram recorded using partially coherent illumination," Opt. Commun. 252, 188-201 (2005). https://doi.org/10.1016/j.optcom.2005.04.003
  22. Y. Kim, T. Kim, S. Woo, H. Kang, T.-C. Poon, and C. Zhou, "Speckle-free digital holographic recording of a diffusely reflecting object," Opt. Express 21, 8183-8189 (2013). https://doi.org/10.1364/OE.21.008183
  23. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (2007), p. 387.
  24. Y. Wang, P. Meng, D. Wang, L. Rong, and S. Panezai, "Speckle noise suppression in digital holography by angular diversity with phase-only spatial light modulator," Opt. Express 21, 1463-1472 (2013).
  25. T.-C. Poon, Optical Scanning Holography with MATLAB (2007), p. 139.
  26. Y.-S. Kim, T.-G. Kim, and J.-T. Kim, "Three-dimensional holographic display with twin image noise rejection using off-axis hologram converting," Korean J. Opt. Photon. 20, 328-333 (2009). https://doi.org/10.3807/KJOP.2009.20.6.328