References
- Ahn JC, Kang JW, Shin JI, Chung P.S., (2012). Combination treatment with photodynamic therapy and curcumin induces mitochondria-dependent apoptosis in AMC-HN3 cells. Int J Oncol, 41, 2184-90.
- Aggarwal BB, Kumar A, Bharti AC (2003). Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res, 23, 363-98.
- Andreani V, Gatti G, Simonella L, Rivero V, Maccioni M (2007). Activation of Toll-like receptor 4 on tumor cells in vitro inhibits subsequent tumor growth in vivo. Cancer Res, 67, 10519-27. https://doi.org/10.1158/0008-5472.CAN-07-0079
- Atsumi T, Tonosaki K, Fujisawa S (2006). Induction of early apoptosis and ROS-generation activity in human gingival fibroblasts (HGF) and human submandibular gland carcinoma (HSG) cells treated with curcumin. Arch Oral Biol, 51, 913-21. https://doi.org/10.1016/j.archoralbio.2006.03.016
- Benchoua A, Couriaud C, Guegan C, et al (2002). Active caspase-8 translocates into the nucleus of apoptotic cells to inactivate poly (ADP-ribose) polymerase-2. J Biol Chem, 277, 34217-22. https://doi.org/10.1074/jbc.M203941200
- Caldwell S, Park SH (2009). The epidemiology of hepatocellular cancer: from the perspectives of public health problem to tumor biology. J Gastroenterol, 44 Suppl 19, 96-101. https://doi.org/10.1007/s00535-008-2258-6
- Chen K, Zhang S, Ji Y, et al (2013). Baicalein inhibits the invasion and metastatic capabilities of hepatocellular carcinoma cells via down-regulation of the ERK pathway. PLoS One, 8, e72927. https://doi.org/10.1371/journal.pone.0072927
- Dai XZ, Yin HT, Sun LF, et al (2013). Potential therapeutic efficacy of curcumin in liver cancer. Asian Pac J Cancer Prev, 14, 3855-9. https://doi.org/10.7314/APJCP.2013.14.6.3855
- Dasu MR, Devaraj S, Zhao L, Hwang DH, Jialal I (2008). High glucose induces toll-like receptor expression in human monocytes: mechanism of activation. Diabetes, 57, 3090-8. https://doi.org/10.2337/db08-0564
- Debatin KM (2004). Apoptosis pathways in cancer and cancer therapy. Cancer Immunol Immunother, 53, 153-9. https://doi.org/10.1007/s00262-003-0474-8
- Gupta S (2003). Molecular signaling in death receptor and mitochondrial pathways of apoptosis (Review). Int J Oncol, 22, 15-20.
- Han KJ, Su XQ, Xu LG, et al (2004). Mechanisms of the TRIFinduced interferon-stimulated response element and NFkappa B activation and apoptosis pathways. J Biol Chem, 279, 15652-61. https://doi.org/10.1074/jbc.M311629200
- Hatcher H, Planalp R, Cho J, Torti FM, Torti SV (2008). Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci, 65, 1631-52. https://doi.org/10.1007/s00018-008-7452-4
- Hengartner MO (2000). The biochemistry of apoptosis. Nature, 407, 770-6. https://doi.org/10.1038/35037710
- Huang B, Zhao J, Li H, et al (2005). Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res, 65, 5009-14. https://doi.org/10.1158/0008-5472.CAN-05-0784
- Huang D, Fang F, Xu F (2011). Hyperoxia-induced up-regulation of Toll-like receptors expression in alveolar epithelial cells. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 23, 645-9.
- Iqbal M, Okazaki Y, Okada S, (2009). Curcumin attenuates oxidative damage in animals treated with a renal carcinogen, ferric nitrilotriacetate (Fe-NTA): implications for cancer prevention. Mol Cell Biochem, 324, 157-64. https://doi.org/10.1007/s11010-008-9994-z
- Iqbal M, Sharma SD, Okazaki Y, Fujisawa M, Okada S. (2003). Dietary supplementation of curcumin enhances antioxidant and phase II metabolizing enzymes in ddY male mice: possible role in protection against chemical carcinogenesis and toxicity. Pharmacol Toxicol, 92, 33-8. https://doi.org/10.1034/j.1600-0773.2003.920106.x
- Janeway CA, Jr.Medzhitov R. (2002). Innate immune recognition. Annu Rev Immunol, 20, 197-216. https://doi.org/10.1146/annurev.immunol.20.083001.084359
- Kang SK, Cha SH, Jeon HG (2006). Curcumin-induced histone hypoacetylation enhances caspase-3-dependent glioma cell death and neurogenesis of neural progenitor cells. Stem Cells Dev, 5, 165-174.
- Karunagaran D, Rashmi R, Kumar TR (2005). Induction of apoptosis by curcumin and its implications for cancer therapy. Curr Cancer Drug Targets, 5, 117-29. https://doi.org/10.2174/1568009053202081
- Kawai T, Akira S (2007). TLR signaling. Semin Immunol, 19, 24-32. https://doi.org/10.1016/j.smim.2006.12.004
- Kelly MG, Alvero AB, Chen R, et al (2006). TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res, 66, 3859-68. https://doi.org/10.1158/0008-5472.CAN-05-3948
- Khar A, Ali AM, Pardhasaradhi BVV, Begum Z, Anjum R (1999). Antitumor activity of curcumin is mediated through the induction of apoptosis in AK-5 tumor cells. Febs Letters, 445, 165-8. https://doi.org/10.1016/S0014-5793(99)00114-3
- Liu D, Chen Z (2013). The effect of curcumin on breast cancer cells. J Breast Cancer, 16, 133-7. https://doi.org/10.4048/jbc.2013.16.2.133
- Liu ZW, Zhu HT, Chen KL, et al (2013). Protein kinase RNAlike endoplasmic reticulum kinase (PERK) signaling pathway plays a major role in reactive oxygen species (ROS)- mediated endoplasmic reticulum stress- induced apoptosis in diabetic cardiomyopathy. Cardiovasc Diabetol, 12, 158. https://doi.org/10.1186/1475-2840-12-158
- Lopez-Lazaro M (2008). Anticancer and carcinogenic properties of curcumin: Considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol Nutr Food Res, 52, S103-27.
- Lv J, Jia R, Yang D, Zhu J, Ding G (2009). Candesartan attenuates Angiotensin II-induced mesangial cell apoptosis via TLR4/MyD88 pathway. Biochem Biophys Res Commun, 380, 81-6 https://doi.org/10.1016/j.bbrc.2009.01.035
- Martin-Cordero C, Leon-Gonzalez AJ, Calderon-Montano JM, Burgos-Moron E, Lopez-Lazaro M (2012). Pro-oxidant natural products as anticancer agents. Current Drug Targets, 13, 1006-28. https://doi.org/10.2174/138945012802009044
- Matsuzawa A, Saegusa K, Noguchi T, et al (2005). ROSdependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nature Immunology, 6, 587-92. https://doi.org/10.1038/ni1200
- Mishra B, Priyadarsini KI, Bhide MK, Kadam RM, Mohan H (2004). Reactions of superoxide radicals with curcumin: probable mechanisms by optical spectroscopy and EPR. Free Radic Res, 38, 355-62. https://doi.org/10.1080/10715760310001660259
- Morin D, Barthelemy S, Zini R, Labidalle S, Tillement JP (2001). Curcumin induces the mitochondrial permeability transition pore mediated by membrane protein thiol oxidation. Febs Letters, 495, 131-6. https://doi.org/10.1016/S0014-5793(01)02376-6
- Mukhopadhyay A, Banerjee S, Stafford LJ, et al (2002). Curcumin-induced suppression of cell proliferation correlates with down-regulation of cyclin D1 expression and CDK4-mediated retinoblastoma protein phosphorylation. Oncogene, 21, 8852-61. https://doi.org/10.1038/sj.onc.1206048
- Nakahira K, Kim HP, Geng XH, et al (2006). Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts. J Exp Med, 203, 2377-89. https://doi.org/10.1084/jem.20060845
- Pan W, Yang H, Cao C, et al (2008). AMPK mediates curcumininduced cell death in CaOV3 ovarian cancer cells. Oncol Rep, 20, 1553-9.
- Parkin DM, Bray F, Ferlay J, Pisani P (2005). Global cancer statistics, 2002. CA Cancer J Clin, 55, 74-108. https://doi.org/10.3322/canjclin.55.2.74
- Powers KA, Szaszi K, Khadaroo RG, et al (2006). Oxidative stress generated by hemorrhagic shock recruits Toll-like receptor 4 to the plasma membrane in macrophages. J Exp Med, 203, 1951-61. https://doi.org/10.1084/jem.20060943
- Qian YG, Deng JF, Geng L, et al (2008). TLR4 signaling induces B7-H1 expression through MAPK pathways in bladder cancer cells. Cancer Investigation, 26, 816-21. https://doi.org/10.1080/07357900801941852
- Scott DW, Loo G, (2004). Curcumin-induced GADD153 gene up-regulation in human colon cancer cells. Carcinogenesis, 25, 2155-64. https://doi.org/10.1093/carcin/bgh239
- Shakibaei M, Mobasheri A, Lueders C, et al (2013). Curcumin enhances the effect of chemotherapy against colorectal cancer cells by inhibition of NF-kappaB and Src protein kinase signaling pathways. PLoS One, 8, e57218. https://doi.org/10.1371/journal.pone.0057218
- Simiantonaki N, Kurzik-Dumke U, Karyofylli G, et al (2007). Reduced expression of TLR4 is associated with the metastatic status of human colorectal cancer. Int J Mol Med, 20, 21-9.
- Tan ML, Ooi JP, Ismail N, Moad AI, Muhammad T.S. (2009). Programmed cell death pathways and current antitumor targets. Pharm Res, 26, 1547-60. https://doi.org/10.1007/s11095-009-9895-1
- Torimura T, Iwamoto H, Nakamura T, et al (2013). Metronomic Chemotherapy: Possible Clinical Application in Advanced Hepatocellular Carcinoma. Transl Oncol, 6, 511-9. https://doi.org/10.1593/tlo.13481
- Venook AP, Papandreou C, Furuse J, de Guevara LL (2010). The incidence and epidemiology of hepatocellular carcinoma: a global and regional perspective. Oncologist, 15 Suppl 4, 5-13.
- Woo JH, Kim YH, Choi YJ, et al (2003). Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, downregulation of Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis, 24, 1199-208. https://doi.org/10.1093/carcin/bgg082
- Wu SH, Hang LW, Yang JS, et al (2010). Curcumin Induces Apoptosis in Human Non-small Cell Lung Cancer NCI-H460 Cells through ER Stress and Caspase Cascadeand Mitochondria-dependent Pathways. Anticancer Res, 30, 2125-33.
- Yang CL, Ma YG, Xue YX, et al (2012). Curcumin induces small cell lung cancer NCI-H446 cell apoptosis via the reactive oxygen species-mediated mitochondrial pathway and not the cell death receptor pathway. DNA Cell Biol, 31, 139-50. https://doi.org/10.1089/dna.2011.1300
- Yoshino M, Haneda M, Naruse M, et al (2004). Prooxidant activity of curcumin: copper-dependent formation of 8-hydroxy-2'-deoxyguanosine in DNA and induction of apoptotic cell death. Toxicol In Vitro, 18, 783-9. https://doi.org/10.1016/j.tiv.2004.03.009
- Yu T, Sheu SS, Robotham JL, Yoon Y, (2008). Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc Res, 79, 341-51. https://doi.org/10.1093/cvr/cvn104
- Zanotto-Filho A, Braganhol E, Edelweiss MI, et al (2012). The curry spice curcumin selectively inhibits cancer cells growth in vitro and in preclinical model of glioblastoma. J Nutr Biochem, 23, 591-601. https://doi.org/10.1016/j.jnutbio.2011.02.015
Cited by
- Curcumin Analogue A501 induces G2/M Arrest and Apoptosis in Non-small Cell Lung Cancer Cells vol.15, pp.16, 2014, https://doi.org/10.7314/APJCP.2014.15.16.6893
- DH332, a Synthetic β-Carboline Alkaloid, Inhibits B Cell Lymphoma Growth by Activation of the Caspase Family vol.15, pp.9, 2014, https://doi.org/10.7314/APJCP.2014.15.9.3901
- Curcumin Induces Apoptosis in SGC-7901 Gastric Adenocarcinoma Cells via Regulation of Mitochondrial Signaling Pathways vol.15, pp.9, 2014, https://doi.org/10.7314/APJCP.2014.15.9.3987
- Licochalcone C induces apoptosis via B-cell lymphoma 2 family proteins in T24 cells vol.12, pp.5, 2015, https://doi.org/10.3892/mmr.2015.4346
- Intestinal injury following liver transplantation was mediated by TLR4/NF-κB activation-induced cell apoptosis vol.13, pp.2, 2015, https://doi.org/10.3892/mmr.2015.4719
- Curcumin: a unique antioxidant offers a multimechanistic approach for management of hepatocellular carcinoma in rat model vol.36, pp.3, 2015, https://doi.org/10.1007/s13277-014-2767-2
- Curcumin induces the apoptosis of A549 cells via oxidative stress and MAPK signaling pathways vol.36, pp.4, 2015, https://doi.org/10.3892/ijmm.2015.2327
- Curcumin decreases malignant characteristics of glioblastoma stem cells via induction of reactive oxygen species vol.17, pp.1, 2017, https://doi.org/10.1186/s12885-017-3058-2
- Oncostatic-Cytoprotective Effect of Melatonin and Other Bioactive Molecules: A Common Target in Mitochondrial Respiration vol.17, pp.3, 2016, https://doi.org/10.3390/ijms17030341
- Synergistic anticancer effect of curcumin and chemotherapy regimen FP in human gastric cancer MGC-803 cells vol.14, pp.3, 2017, https://doi.org/10.3892/ol.2017.6627
- Molecular Mechanisms Underlying Curcumin-Mediated Therapeutic Effects in Type 2 Diabetes and Cancer vol.2018, pp.1942-0994, 2018, https://doi.org/10.1155/2018/9698258
- Alteronol induces cell cycle arrest and apoptosis via increased reactive oxygen species production in human breast cancer T47D cells vol.70, pp.4, 2018, https://doi.org/10.1111/jphp.12879
- What Has Come out from Phytomedicines and Herbal Edibles for the Treatment of Cancer? vol.13, pp.18, 2018, https://doi.org/10.1002/cmdc.201800343
- Curcumin as a therapeutic agent in leukemia pp.00219541, 2019, https://doi.org/10.1002/jcp.28072
- Impact of curcumin on toll-like receptors pp.00219541, 2019, https://doi.org/10.1002/jcp.28103