DOI QR코드

DOI QR Code

Continuous Renal Replacement Therapy in Infants and Neonates

신생아와 영아의 지속적 신대체 요법

  • Kim, Seong Heon (Department of Pediatrics, Pusan National University Children's Hospital, Pusan National School of Medicine) ;
  • Shin, Jae Il (Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine)
  • 김성헌 (부산대학교 의학전문대학원 소아청소년과학교실) ;
  • 신재일 (연세대학교 의과대학 소아과학교실)
  • Received : 2014.03.14
  • Accepted : 2014.04.11
  • Published : 2014.04.30

Abstract

Continuous renal replacement therapy (CRRT) has become the preferred dialysis modality to support critically ill children with acute kidney injury. As CRRT technology and clinical practice advances, experiences using CRRT on small infants and neonates have increased. In neonates with hyperammonemia or acute kidney injury during extracorporeal membrane oxygenation (ECMO) therapy, CRRT can be a safe and effective technique. However, there are many limitations of CRRT in neonates, including vascular access, bleeding complications, and lack of neonatespecific devices. This review discusses the basic principles of CRRT and the special considerations when using this technique in neonates and infants.

지속적 신 대체 요법(CRRT)은 급성 신손상이 있는 중증 소아의 치료로 점차 사용이 늘어나고 있으며 CRRT의 기술과 실제 사용법이 발달하면서 작은 영아나 신생아에서도 그 사용이 조금씩 늘어나고 있다. 고암모니아혈증이나 체외막산소화 장치(ECMO) 치료 중에 발생한 급성 신손상 등의 경우 CRRT가 안전하고 효과적인 치료가 될 수 있으나, 혈관 접근이나 출혈 그리고 신생아 전용 CRRT device의 부재로 인한 여러 가지 제한점이 있다. 이 종설에서는 기본적인 CRRT의 원리를 알아보고 신생아와 영아에서 특별히 고려해야 할 사항들에 대해 알아보고자 한다.

Keywords

References

  1. Lee BS. Continuous Renal Replacement Therapy in Neonates. Neonatal Med 2013;20:12-19. https://doi.org/10.5385/nm.2013.20.1.12
  2. Moghal NE, Brocklebank JT, Meadow SR. A review of acute renal failure in children: incidence, etiology and outcome. Clin Nephrol 1998;49:91-5.
  3. Jee Min P. Continuous Renal Replacement Therapy in Children. Journal of the Korean Society of Pediatric Nephrology 2009; 13:118-29. https://doi.org/10.3339/jkspn.2009.13.2.118
  4. Park SJ, Shin JI. Overview of Pediatric Continuous Renal Replacement Therapy in Acute Kidney Injury. J Korean Soc Pediatr Nephrol 2011;15:107-15. https://doi.org/10.3339/jkspn.2011.15.2.107
  5. Sutherland SM, Alexander SR. Continuous renal replacement therapy in children. Pediatr Nephrol 2012;27:2007-16. https://doi.org/10.1007/s00467-011-2080-x
  6. Bellomo R, Ronco C. Continuous haemofiltration in the intensive care unit. Crit Care 2000;4:339-45. https://doi.org/10.1186/cc718
  7. Churchwell MD, Mueller BA. Drug dosing during continuous renal replacement therapy. Semin Dial 2009;22:185-8. https://doi.org/10.1111/j.1525-139X.2008.00541.x
  8. Hackbarth R, Bunchman TE, Chua AN, Somers MJ, Baum M, Symons JM et al. The effect of vascular access location and size on circuit survival in pediatric continuous renal replacement therapy: a report from the PPCRRT registry. Int J Artif Organs 2007;30:1116-21. https://doi.org/10.1177/039139880703001212
  9. El Masri K, Jackson K, Borasino S, Law M, Askenazi D, Alten J. Successful continuous renal replacement therapy using two single-lumen catheters in neonates and infants with cardiac disease. Pediatr Nephrol 2013;28:2383-7. https://doi.org/10.1007/s00467-013-2578-5
  10. Del Castillo J, López-Herce J, Cidoncha E, Urbano J, Mencía S, Santiago MJ et al. Circuit life span in critically ill children on continuous renal replacement treatment: a prospective observational evaluation study. Crit Care 2008;12:R93. https://doi.org/10.1186/cc6965
  11. Rödl S, Marschitz I, Mache CJ, Koestenberger M, Madler G, Rehak T et al. First experience with the Prismaflex HF 20 set in four infants. Int J Artif Organs 2011;34:10-5. https://doi.org/10.5301/IJAO.2011.6315
  12. Rodl S, Marschitz I, Mache CJ, Koestenberger M, Madler G, Rehak T et al. One-year safe use of the Prismaflex $HF20(^{(R)})$ disposable set in infants in 220 renal replacement treatment sessions. Intensive Care Med 2011;37:884-5. https://doi.org/10.1007/s00134-011-2147-y
  13. Liu ID, Ng KH, Lau PY, Yeo WS, Koh PL, Yap HK. Use of HF20 membrane in critically ill unstable low-body-weight infants on inotropic support. Pediatr Nephrol 2013;28:819-22. https://doi.org/10.1007/s00467-012-2394-3
  14. Sohn YB, Paik KH, Cho HY, Kim SJ, Park SW, Kim ES et al. Continuous renal replacement therapy in neonates weighing less than 3 kg. Korean J Pediatr 2012;55:286-92. https://doi.org/10.3345/kjp.2012.55.8.286
  15. Kim HJ, Park SJ, Park KI, Lee JS, Eun HS, Kim JH et al. Acute treatment of hyperammonemia by continuous renal replacement therapy in a newborn patient with ornithine transcarbamylase deficiency. Korean J Pediatr 2011;54:425-8. https://doi.org/10.3345/kjp.2011.54.10.425
  16. Goldstein SL. Continuous renal replacement therapy: mechanism of clearance, fluid removal, indications and outcomes. Curr Opin Pediatr 2011;23:181-5. https://doi.org/10.1097/MOP.0b013e328342fe67
  17. Santiago MJ, Sánchez A, López-Herce J, Pérez R, del Castillo J, Urbano J et al. The use of continuous renal replacement therapy in series with extracorporeal membrane oxygenation. Kidney Int 2009;76:1289-92. https://doi.org/10.1038/ki.2009.383
  18. Symons JM, Chua AN, Somers MJ, Baum MA, Bunchman TE, Benfield MR et al. Demographic characteristics of pediatric continuous renal replacement therapy: a report of the prospective pediatric continuous renal replacement therapy registry. Clin J Am Soc Nephrol 2007;2:732-8. https://doi.org/10.2215/CJN.03200906