Effects of Silibinin and Resveratrol on Degradation of $I{\kappa}B$ and Translocation of NF-${\kappa}B$ p65 Induced by Tumor Necrosis Factor-${\alpha}$ in Cultured Airway Epithelial Cells

배양된 기도 상피세포에서 종양괴사인자에 의한 $I{\kappa}B$의 분해와 NF-${\kappa}B$ p65의 핵으로의 이동에 미치는 실리비닌과 레스베라트롤의 영향

  • Park, Su Hyun (Department of Pharmacology, School of Medicine, Chungnam National University) ;
  • Lee, Hyun Jae (Department of Pharmacology, School of Medicine, Chungnam National University) ;
  • Ryu, Jiho (Department of Pharmacology, School of Medicine, Chungnam National University) ;
  • Lee, Su Yel (Department of Pharmacology, School of Medicine, Chungnam National University) ;
  • Shin, Hyun-Dae (Department of Pharmacology, School of Medicine, Chungnam National University) ;
  • Hong, Jang-Hee (Department of Pharmacology, School of Medicine, Chungnam National University) ;
  • Seok, Jeong Ho (Department of Pharmacology, School of Medicine, Chungnam National University) ;
  • Lee, Choong Jae (Department of Pharmacology, School of Medicine, Chungnam National University)
  • 박수현 (충남대학교 의과대학 약리학교실) ;
  • 이현재 (충남대학교 의과대학 약리학교실) ;
  • 류지호 (충남대학교 의과대학 약리학교실) ;
  • 이수열 (충남대학교 의과대학 약리학교실) ;
  • 신현대 (충남대학교 의과대학 약리학교실) ;
  • 홍장희 (충남대학교 의과대학 약리학교실) ;
  • 석정호 (충남대학교 의과대학 약리학교실) ;
  • 이충재 (충남대학교 의과대학 약리학교실)
  • Received : 2013.09.22
  • Accepted : 2013.12.02
  • Published : 2014.02.28

Abstract

We examined whether silibinin and resveratrol affect airway mucin production, degradation of $I{\kappa}B$ and translocation of NF-${\kappa}B$ p65 induced by TNF-${\alpha}$ in NCI-H292 cells. Cells were pretreated with each agent for 30 min and then stimulated with TNF-${\alpha}$ for 24 h or the indicated periods. The two compounds suppressed TNF-${\alpha}$-induced airway mucin production, degradation of $I{\kappa}B$ and translocation of NF-${\kappa}B$ p65. This result suggests that silibinin and resveratrol can regulate the production of mucin induced by TNF-${\alpha}$ through the inactivation of NF-${\kappa}B$ pathway in airway epithelial cells.

Keywords

References

  1. Voynow, J. A. and Rubin, B. K. : Mucins, mucus, and sputum. Chest 135, 505 (2009). https://doi.org/10.1378/chest.08-0412
  2. Kim, K. C., Rearick, J. I., Nettesheim, P. and Jetten, A. M. : Biochemical characterization of mucous glycoproteins synthesized and secreted by hamster tracheal epithelial cells in primary culture. J. Biol. Chem. 260, 4021 (1985).
  3. Ko, K. H., Lee, C. J., Shin, C. Y., Jo, M.-J. and Kim, K. C. : Inhibition of mucin release from airway goblet cells by polycationic peptides. Am. J. Physiol. 277, L811 (1999).
  4. Kim, K. C., Opaskar-Hincman, H. and Bhaskar, K. R. : Secretions from primary hamster tracheal surface epithelial cells in culture: Mucin-like glycoproteins, proteoglycans, and lipids. Exp. Lung Res. 15, 299 (1989). https://doi.org/10.3109/01902148909087860
  5. Mutschler, E. and Derendorf, H. : Drug actions. CRC press, Inc., Boca Raton, Florida, 410 (1995).
  6. Birrell, M. A., McCluskie, K., Wong, S., Donnelly, L. E., Barnes, P. J. and Belvisi, M. G. : Resveratrol, an extract of red wine, inhibits lipopolysaccharide induced airway neutrophilia and inflammatory mediators through an NF-kappaB-independent mechanism. FASEB J. 19, 840 (2005). https://doi.org/10.1096/fj.04-2691fje
  7. Donnelly, L. E., Newton, R., Kennedy, G. E., Fenwick, P. S., Leung, R. H., Ito, K., Russell, R. E. and Barnes, P. J. : Antiinflammatory effects of resveratrol in lung epithelial cells: molecular mechanisms. Am. J. Physiol. Lung Cell Mol. Physiol. 287, L774 (2004). https://doi.org/10.1152/ajplung.00110.2004
  8. Lee, M., Kim, S., Kwon, O. K., Oh, S. R., Lee, H. K. and Ahn, K. : Anti-inflammatory and anti-asthmatic effects of resveratrol, a polyphenolic stilbene, in a mouse model of allergic asthma. Int. Immunopharmacol. 9, 418 (2009). https://doi.org/10.1016/j.intimp.2009.01.005
  9. Kode, A., Rajendrasozhan, S., Caito, S., Yang, S. R., Megson, I. L. and Rahman, I. : Resveratrol induces glutathione synthesis by activation of Nrf2 and protects against cigarette smoke-mediated oxidative stress in human lung epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 294, L478 (2008). https://doi.org/10.1152/ajplung.00361.2007
  10. Lee, S. Y., Lee, H. J., Sikder, M. A., Shin, H. D., Kim, J. H., Chang, G. T., Seok, J. H. and Lee, C. J. : Resveratrol inhibits mucin gene expression, production and secretion from airway epithelial cells. Phytother. Res. 26, 1082 (2012). https://doi.org/10.1002/ptr.3701
  11. Ligeret, H., Brault, A., Vallerand, D., Haddad, Y. and Haddad, P. S. : Antioxidant and mitochondrial protective effects of silibinin in cold preservation-warm reperfusion liver injury. J. Ethnopharmacol. 115, 507 (2008). https://doi.org/10.1016/j.jep.2007.10.024
  12. Kim, K. D., Lee, H. J., Lim, S. P., Sikder, A., Lee, S. Y. and Lee, C. J. : Silibinin regulates gene expression, production and secretion of mucin from cultured airway epithelial cells. Phytother. Res. 26, 1301 (2012). https://doi.org/10.1002/ptr.3727
  13. Ellis, E. F. : Asthma in childhood. J. Allergy. Clin. Immunol. 72 (Suppl), 526 (1985).
  14. Rogers, D. F. and Barnes, P. J. : Treatment of airway mucus hypersecretion. Ann. Med. 38, 116 (2006). https://doi.org/10.1080/07853890600585795
  15. Takeyama, K., Dabbagh, K., Jeong, Shim J., Dao-Pick, T., Ueki, I. F. and Nadel, J. A. : Oxidative stress causes mucin synthesis via transactivation of epidermal growth factor receptor: role of neutrophils. J. Immunol. 164, 1546 (2000). https://doi.org/10.4049/jimmunol.164.3.1546
  16. Takeyama, K., Dabbagh, K., Lee, H., Agusti, C., Lausier, J. A., Ueki, I. F., Grattan, K. M. and Nadel, J. A. : Epidermal growth factor system regulates mucin production in airways. Proc. Natl. Acad. Sci. USA 6, 3081 (1999).
  17. Li, J. D., Dohrman, A. F., Gallup, M., Miyata, S., Gum, J. R., Kim, Y. S., Nadel, J. A., Prince, A. and Basbaum, C. B. : Transcriptional activation of mucin by Pseudomonas aeruginosa lipopolysaccharide in the pathogenesis of cystic fibrosis lung disease. Proc. Natl. Acad. Sci. USA 94, 967 (1997). https://doi.org/10.1073/pnas.94.3.967
  18. Bannwart, C. F., Nakaira-Takahagi, E., Golim, M. A., de Medeiros, L. T., Romo, M., Weel, I. C. and Peraoli, M. T. : Downregulation of nuclear factor-kappa B (NF-kappaB) pathway by silibinin in human monocytes challenged with Paracoccidioides brasiliensis. Life Sci. 86, 880 (2010). https://doi.org/10.1016/j.lfs.2010.04.005
  19. Liu, P. L., Tsai, J. R., Charles, A. L., Hwang, J. J., Chou, S. H., Ping, Y. H., Lin, F. Y., Chen, Y. L., Hung, C. Y., Chen, W. C., Chen, Y. H. and Chong, I. W. : Resveratrol inhibits human lung adenocarcinoma cell metastasis by suppressing heme oxygenase 1-mediated nuclear factor-kappaB pathway and subsequently downregulating expression of matrix metalloproteinases. Mol. Nutr. Food Res. 54, S196 (2010). https://doi.org/10.1002/mnfr.200900550
  20. Deng, Y. H., Alex, D., Huang, H. Q., Wang, N., Yu, N., Wang, Y. T., Leung, G. P. and Lee, S. M. : Inhibition of TNF-$\alpha$- mediated endothelial cell-monocyte cell adhesion and adhesion molecules expression by the resveratrol derivative, trans- 3,5,4'-trimethoxystilbene. Phytother. Res. 25, 451 (2011).
  21. Kumar, A. and Sharma, S. S. : NF-kappaB inhibitory action of resveratrol: a probable mechanism of neuroprotection in experimental diabetic neuropathy. Biochem. Biophys. Res. Commun. 394, 360 (2010). https://doi.org/10.1016/j.bbrc.2010.03.014
  22. Song, K. S., Lee, W. J., Chung, K. C., Koo, J. S., Yang, E. J., Choi, J. Y. and Yoon, J. H. : IL-1beta and TNF-alpha induced MUC5AC overexpression through a mechanism involving ERK/p38 mitogen-activated protein kinase-MSK1-CREB activation in human airway epithelial cells. J. Biol. Chem. 278, 23243 (2003). https://doi.org/10.1074/jbc.M300096200
  23. Shao, M. X., Ueki, I. F. and Nadel, J. A. : TNF-alpha converting enzyme mediated MUC5AC mucin expression in cultured human airway epithelial cells. Proc. Natl. Acad. Sci. USA 100, 11618 (2003). https://doi.org/10.1073/pnas.1534804100
  24. Ishinaga, H., Takeuchi, K., Kishioka, C., Suzuki, S. and Basbaum, C. : Pranlukast inhibits NF-kappaB activation and MUC2 gene expression in cultured human epithelial cells. Pharmacol. 73, 89 (2005). https://doi.org/10.1159/000081294