
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014 965

Copyright ⓒ 2014 KSII

This research was supported by the National Natural Science Foundation (61272125) of China, the specialized

research fund for the doctoral program of Higher Education (20121333110014) and the Hebei Provincial Natural

Science Foundation (F2011203234).

http://dx.doi.org/10.3837/tiis.2014.03.014

A Process Algebra-Based Detection Model
for Multithreaded Programs in

Communication System

Tao Wang
1,2,3 , Limin Shen

1,3
 and Chuan Ma

1,3
1
 College of Information Science and Engineering, Yanshan University

Qinhuangdao, 066004 - China

[e-mail: tianyi_mc@126.com]
2 Hebei Normal University of Science & Technology

Qinhuangdao, 066004 - China

[e-mail: yy_mma@126.com]
3The Key Laboratory for Computer Virtual Technology and System Integration, Hebei Province

Qinhuangdao, 066004, China

*Corresponding author: Tao Wang

Received October 31, 2013; revised February 7, 2014; accepted March 5, 2013; published March 31, 2014

Abstract

Concurrent behaviors of multithreaded programs cannot be described effectively by

automata-based models. Thus, concurrent program intrusion attempts cannot be detected. To

address this problem, we proposed the process algebra-based detection model for

multithreaded programs (PADMP). We generate process expressions by static binary code

analysis. We then add concurrency operators to process expressions and propose a model

construction algorithm based on process algebra. We also present a definition of process

equivalence and behavior detection rules. Experiments demonstrate that the proposed

method can accurately detect errors in multithreaded programs and has linear space–time

complexity. The proposed method provides effective support for concurrent behavior

modeling and detection.

Keywords: intrusion detection, concurrent behavior, static analysis, process algebra,

system call

mailto:yy_mma@126.com

966 Wang et al.: A Process Algebra-Based Detection Model for Multithreaded Programs in Communication System

1. Introduction

Multithreading is an important mechanism for supporting program structuring and parallel

computation. With the multithread technique, the application prospects of concurrent

systems are becoming increasingly extensive. However, concurrent systems have specific

characteristics, such as programming complexity, randomness of running results, and

reproducibility. Therefore, security for concurrent systems is a concern, and constructing a

model to describe and detect concurrent behaviors is an effective solution.

1.1 Related Work

Constructing a valid and precise program model is a challenging task. Because the original

development of a model that takes advantage of the system call sequence for normal

program behavior was originally presented by Forrest et al. [1], many scholars have

researched software behavior using the system call. These studies are based on three basic

techniques for model construction: system call short sequences [2-4], automata [5-8], and the

Virtual Path [9]. Of these techniques, modeling based on system call short sequences is

efficient and can be implemented easily. However, this method is imprecise, and these

intrusion detection models are much more prone to false positives. Compared with short

sequences, branch and loop structures of programs can be expressed. Modeling based on

automata improves the precision of behavior modeling and reduces the false positive rate.

Unfortunately, these models still have some limitations. For example, impossible paths,

prohibitively high space–time complexity, and they are unsuitability for analyzing

concurrent behaviors.

For concurrent behaviors, previous research has focused on two basic techniques: data

race errors and timing analysis. Savage et al. discussed the potential data race problems

based on the Lockset detection method when multiple threads access the same shared

variables without locking [10]. Schonberg et al. analyzed data race problems that visited

order uncertain, based on happen-before method [11]. Wang et al. presented a multilockset

algorithm that considered the relation of happen-before and detected race condition at

runtime [12]. Kong Deguang et al. presented a timing analysis method for multithreaded

programs based on a hidden Markov model [13]. However, designing such models is

complex because it is difficult to abstract a concurrent environment. Moreover, the

space–time complexity is prohibitively high and unsuitable for practical use.
Modern software systems are prevalently concurrent; thus, they are difficult to get right.

Unusual or unexpected behaviors in concurrent programs are difficult to discover using

traditional detection techniques. Z. Rakamaric described a scalable, automatic, and precise

approach to static unit checking of concurrent programs implemented in a tool called

STORM [14]. To eliminate concurrency errors for a class of multithreaded programs, Berger

et al. presented Grace, a software-only runtime system [15]. Tallent et al. described how to

measure and attribute arbitrary performance metrics for high-level multithreaded

programming models [16]. In addition, a technique to measure and analyze lock contention

has been implemented [17]. To increase the reliability of multithreaded programs, a

cooperative software–hardware mechanism to increase the performance of multithreaded

applications was proposed, which was the first generalized mechanism to identify the most

critical bottlenecks that cause thread waiting on multithreaded applications and accelerate

those bottlenecks [18].

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014 967

Copyright ⓒ 2014 KSII

1.2 Main Contributions

We construct a process algebra-based detection model for multithreaded programs in a

communication system. The basic idea is as follows: A system call is mapped to an action by

static binary code analysis; a control flow graph (CFG) of the program is mapped to a

process; process expressions are generated according to the process algebra algorithms;

concurrency operators are added into process expressions; model construction algorithm and

behavior detection rules are defined; and the process algebra-based detection model for

multithreaded programs (PADMP) is used to detect concurrent behaviors. Our primary

contributions can be summarized as follows:

1) The PADMP model enables efficient multithreaded program modeling. The PADMP

model represents a substantial improvement in statically constructed multithreaded program

models because it can describe concurrent behaviors of a multithreaded program effectively.

2) This method is also suitable for sequential behavior modeling and detection. To the best

of our knowledge, we are the first to apply process algebra to behavior modeling, which is a

profitable attempt in the field of multithreaded program behavior detection.

3) According to the properties of process algebra, some definitions and laws are given to

provide a theoretical framework for concurrent behaviors. By reducing and merging process

expressions, the PADMP model produces a smaller state space, moreover, it is complete.

The main advantage of the proposed PADMP model is that it can accurately detect errors

in multithreaded programs, such as data race, deadlock, and abnormal time sequence errors.

All test programs show an order of magnitude improvement in space–time complexity.

1.3 Organization of the Paper

The remainder of this paper is organized as follows. In Section 2, we introduce process

algebra. In Section 3, the PADMP model construction algorithm is discussed. Section 4

presents the behavior detection rules. An experimental evaluation is discussed in Section 5,

and we conclude the paper in Section 6.

2. Process Algebra

Process algebra is a mathematical tool used for depicting concurrent systems [19-20], and is

used for researching concurrent, distributed, interactive systems [21]. At present, the

Asynchronous Sequential Processes (ASP) [22-23] and Ambient Calculus [24-25] have more

functions to describe the behavior of asynchronous concurrent system in theory research.

This paper introduces process algebra for multithreaded programs modeling by extending its

algorithms and describing the interaction of behaviors based on system calls. We extract a

common subset of process algebra. Let Act be a finite set of given actions (A). The syntax

specifications are defined as follows:

1 2 1 2:: 0 | | . | / | | ||AP a P P L P P P P √
Their corresponding meanings are as follows:

1) 0 stands for process down time, no action is performed.√stands for process

terminated successfully.

2) .a P stands for executable action a , then transformed into

process P , { }a Act   ;  stands for unobservable action. Actions in this paper are the

same as actions in CCS [26], divided into action (a) and co-action (a), obviously a a .

http://www.iciba.com/time_sequence

968 Wang et al.: A Process Algebra-Based Detection Model for Multithreaded Programs in Communication System

3) /P L stands for action (a) in P appearing in L will be hided and be replaced

by unobservable action  at runtime.

4) 1 2P P stands for the choice of 1P or 2P , according to the process subordinated

by the following actions.

5) 1 2||AP P means that if action (a) in 1P and co-action (a) in 2P are

subordinated to set A , then 1P and 2P execute synchronously, while any other actions

are executed asynchronously.

Definition 1 Guarded Expression. The process expression begins with the prefix action. e.g.,

.P a Q , . .P a b R .

Definition 2 Successful Termination Guarded Expression. The process expression that

begins with the prefix action and ends with a successful termination process. e.g.,

. .P a b √.
Definition 3 Recursive Guarded Expression. The process expression that begins with the

prefix action and ends with itself. e.g., .P a P .
Definition 4 Behavior Trace. Suppose the process P can be defined as a finite state transition

of the form: 11

0 1 1

n n

n n

a aa
P P P P P


   …

1 2
, ,

n
a a a … is the behavior trace of process P . The set of all possible behavior

traces is denoted by ()traces P .

3. Model Construction Infrastructure

We have developed the PADMP model. The development procedure can be divided into four

steps. First, static binary code analysis for multithreaded programs was employed to generate

CFGs for each function. Second, the process expressions were generated from the CFGs.

Third, the process expressions were rewritten by adding concurrent operations. Finally, the

process algebra-based PADMP model was constructed.

3.1 From Binary Code to CFGs

We use static binary code analysis to generate a CFG because it does not require human

interaction, determination of representative data sets, or access to a program’s source code.

However, it should be noted that it is unsuitable for interpreted-language analysis. The

techniques to generate a CFG from binary code are very mature [6–7]. We use the

executable editing library method to generate CFGs [6]. If the transformation of a flow

chart does not contain any function call, it is regarded as an empty operation  . We

eliminate all edges  using a previously reported reduction algorithm [27]. A

corresponding example is given in Section 5.2.

We replace library functions with system calls by comparing the library function and

system call tables. The call instruction in assembly code calls library functions rather than

system calls; thus, we must replace it with the corresponding system call. For example, sleep

was replaced by nanosleep and printf was replaced by write. We then capture and analyze

arguments. This is required to represent the behavior of a system call accurately. For example,

we cannot know if semop execution is a P or V operation.

3.2 From CFGs to Process Expressions

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014 969

Copyright ⓒ 2014 KSII

We denote the CFGs as { , }G V E , which were generated according to the process

discussed in Section 3.1. Here, V denotes vertices, and E denotes the directed edges that

were marked with system calls. For example, Fig. 1 shows one possible CFG generated from

some binary code. We use the adjacency list to store it, shown in Fig. 2.

a
P2

P3

P1 P4

P5

P6 P7

b

c

d

e

f

g

h

i

j

Fig. 1. A CFG generated from some binary code

2 a ^

3 b 4 d ^

2 c ^

5 e 6 g 7 j ^

6 h 7 i ^

2 f ^

^ ^

1

2

3

4

5

6

7

verte

x

firstedg

e
adjvex nextinfo

Fig. 2. The adjacency list of CFG in Fig.1

The algorithm that generates the process expressions from the CFGs is as follows.

(1) Find out the loop entry

According to sequential composition, if
0 1

1 2

.

.

P a P

P b P





 , then expand 0 2. .P a b P and cut P1.

But if P1 in a loop， e.g.,
0 1

1 1

.

.

P a P

P c P





, then expand and obtain

0 1

1 1

. .

.

P a c P

P c P





. The equations do

not be cut, thus they should not be expanded. In a loop, there is a node called the loop entry

with the property that no other node in the loop has a predecessor outside the loop .That is,

every path from the entry of the entire flow graph to any node in the loop goes through the

loop entry. Therefore, we should find out the loop entry and don’t expanded it.

By comparing the vertex and adjvex as shown in Fig. 2, if the number of vertexes is

greater than or equal to adjvex, then the adjvex is the loop entry. The adjacency list of Fig. 2

has three loops and has two loop entries (node 2(3≥2,5≥2) and node 6(6≥6)).
(2) Depth-first search to generate the process expressions

Selecting the loop entries and CFG entry (node 1, as shown in Fig. 1) as the root

separately, we adopt depth-first search algorithm. We make the parent-child nodes sequential

composition and make brother nodes alternative composition. To ensure that the loop entries

do not be expanded, when we search a node that belongs to the loop entry, we backtrack to

its parent node.

Fig. 1 has three nodes (1,2,6) as the root, so we get three process expressions:

P1=a.P2

P2=b.c.P2+d.(e.f.P2+g.P6+j.0)

P6=h.P6+i.0

970 Wang et al.: A Process Algebra-Based Detection Model for Multithreaded Programs in Communication System

3.3 Adding Concurrency Operators to Process Expressions

We obtain process expressions of functions according to the processes discussed in Sections

3.1 and 3.2. However, the expressions are not marked as an action (a) or a coaction (a),

which are used for concurrency. Thus, we must rewrite the process expressions.

We abstract mutual exclusion operations for a critical area as lock (l) and unlock (u).

Concurrency operators are added to process expressions in the following situations:

(1) Situation 1. Multiple processes or threads: If the input edges are multiple processes or

threads operation led by fork, vfork and clone, we should analyze jump sentences and

change alternative composition of jump sentences to parallel composition(‘+’→’||A’), such

as JLE and JNE.

(2) Situation 2. Mutual exclusion: If the input edges are mutual exclusion operation led by

lock and unlock, we should add concurrency operators of exclusion operation to process

expressions. Some coactions (a) do not appear in expressions, such as critical sections and

signal lamps. Thus, we create a process for each semaphore and make a parallel composition

with the corresponding concurrent process.

L0
L1

lock(m)

(a) (b)

unlock(m)

L2
L1

lock(m)

unlock(m)

Ln
Ln-1

lock(m)

unlock(m)

lock(m)

unlock(m)

… …

Fig. 3. State transition diagram for mutual exclusion

If the initial value of a binary semaphore is 1, its behaviors are described as

1 1(). ().L lock m unlock m L . Similarly, if the initial value of the binary semaphore is 0, its

behaviors are described as 0 0(). ().L unlock m lock m L , as is shown in Fig. 3(a). Therefore,

the initial value of a signal lamp is n (n>0) and can be described as 1 1 1|| || ... ||n A A AL L L L ,

as is shown in Fig. 3(b).
(3) Situation 3. Condition variable: If the input edges are condition variable operation led

by lock, wait, signal and unlock, we should add concurrency operators of condition variable

to process expressions. In concurrent programming, we construct a synchronization construct

using a condition variable, which allows threads to have both mutual exclusion and the

ability to wait (block) for a certain condition to become true, as shown in Fig. 4.

Pcv0' Pcv0

lock(m)
Pcv1' Pcv1

signal(cv')

unlock(m)

wait(m,cv)

wait(m,cv)

Fig. 4. State transition diagram for a condition variable

Its behaviors are described as follows.

0 1(). (,).cv cvP lock m wait m cv P

1 1 0(,). ('). ().cv cv cvP wait m cv P signal cv unlock m P 

(4) Situation 4. Read/Write lock: If the input edges are read/write lock operation led by

rlock, wlock and unlock, we should add concurrency operators of read/write lock to process

expressions. A read/write lock allows concurrent read access to an object; however, it

requires exclusive access for write operations, as shown in Fig. 5.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014 971

Copyright ⓒ 2014 KSII

Pwl

Prwl

rlock(m)

unlock(m)

Prl2
Prl1

unlock(m)

Prln
Prln-1

unlock(m)unlock(m)

… …

wlock(m)

unlock(m)

rlock(m) rlock(m) rlock(m)

Fig. 5. State transition diagram for read/write lock

Its behaviors are described as follows.

|| (). ().rwl rl A rl rwlP P P wlock m unlock m P 

(). ().rl rlP rlock m unlock m P

||rl A rlP P denotes a read-lock. In this pattern, multiple readers can read the data in

parallel. (). (). rwlwlock m unlock m P denotes a write-lock. When a writer is writing the data,

readers will be blocked until the writer has finished writing.

3.4 Constructing the PADMP Model

Here, we present Definition 6 as an equivalence basis for the process expressions. Based on

Definition 6, the laws of alternative composition and parallel composition are given. Then,

we construct the PADMP model.

Definition 5 Action. A system call is an action.
In this paper, we map system calls to actions as the smallest unit to describe process

behavior.

Definition 6 Process equivalence. If there are two different processes P Q
(() ()traces P traces Q), i.e., () ()traces P traces Q and ()traces Q  ()traces P , then P is

equivalent to Q .

Our model is used to detect behaviors; thus, the process equivalence is based on the

behavior trace. If two processes have the same behavior trace, they are considered equivalent.

This also meets the requirements for behavior detection. However, this differs from

equivalence based on mutual simulation of CCS [26]; therefore, the left distributive law of

alternative composition states that (. . .()a P a Q a P Q  ). It also differs from equivalence

based on refusal sets of CSP [28]. . .0 0P P P     is different from 0P P  in

CSP. As long as the stop sign 0 appears in the alternative composition, the process is

considered to result in downtime and is therefore unsafe.

Here, we present some laws for alternative compositions and parallel compositions based

on Definition 6.

Law 1 || ||A AP Q Q P .

Law 2 (||) || || (||)A A A AP Q R P Q R .

Law 3
() || || ()

|| ||

A A

A A

P Q R R P Q

P R Q R

  

 
.

Law 4 0 is a zero element and √ is an identity; i.e., || 0 0AP  ; ||AP P√ .

Law 5 If ,a a A , then . || . / .(||) /A Aa P a Q a P Q a .

972 Wang et al.: A Process Algebra-Based Detection Model for Multithreaded Programs in Communication System

Law 6 If ,c d A and d c , then . || . 0Ac P d Q  .

According to Laws 5 and 6, we know the actions in A cannot execute independently. Thus,

they must execute synchronously with corresponding coactions.

Law 7 If ,a a A , then
. || . || . /

.(||) / .(||) /

A A

A A

a P a Q a R a

P R a Q R a 




.

Law 7 indicates that if processes .a P and .a Q compete for .a R , they must be

concurrent with .a R .

Law 8 If a A and c A , then . || . .(|| .)A Aa P c Q a P c Q .

Law 9 If ,a b A , then . || . .(|| .) .(. ||)A A Aa P bQ a P bQ b a P Q  .

Laws 8 and 9 indicate that actions without in the set A execute asynchronously.

Law 10 If . .P a Q a R  , then . . .()P a Q a R a Q R    .

Law 10 transforms a nondeterministic alternative process into a deterministic process.

Thus, we obtain Law 11.

Law 11 P P P  .
Based on the above definitions and laws, we can construct actions, operators, and

processes.

1) Action. We use a triplet to describe an action. :: { , , }action syscall acttype paramlist .

syscall denotes system calls, acttype denotes action type, including actions and coactions,

and paramlist denotes an argument list for syscall .

2) Operators and states. The basic expressions, .a P , 1 2. .a P b P , and 1 2. || .Aa P b P , are

made up of sequential, alternative, and parallel composition operators. We use a structure

with at most two outputs to describe the states composed of different operators. The initial

values of the structure are 1out NULL and 2out NULL ; i.e.,

:: { , , 1, 2}state opetype action out out . opetype denotes operator type, and 1out and 2out

are links pointing to the next state. 0opetype  indicates that, for a successful termination

state (√), action   , and 1out and 2out are not used, as shown in Fig. 6(a). 1opetype 

indicates that sequential composition operator (.) uses only 1out , which describes the state

shown in Fig. 6(b). 2opetype  indicates alternative composition operators, as is shown in

Fig. 6(c).

a
√

(a) (b) (c)

out1

out1

out2

Fig. 6. Graphs of stuct state when opetype has different values

3) Process. A process is composed of actions and operators. We use two tuples to describe

a process. i.e., :: { , }process statelist outlist . statelist denotes the set of states. If the state

in statelist is greater than one, then suggest processes in the concurrent state. outlist is a

series of link lists pointing to the states.

4) Construction algorithm

According to the symmetric law, associative law, and distributive law of choice operators,

any process that does not contain concurrency operators can be constructed by action a ,

successful termination √, .a b , and a b . In this paper, we refer to a , √, .a b , and

a b as meta process expressions.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014 973

Copyright ⓒ 2014 KSII

Here, we describe the parallel composition operators (||A). Two concurrent processes

1 2||AP P , { , , , }A a a c c and '

1 1. . .P a b c P , '

2 2. . .P a c d P are illustrated in Fig. 7.

11 12

b
13 14

21 22 23
d

24
a

a

c

cP1

P2

Fig. 7. Concurrent processes

According to the laws, we know the execution process of 1 2||AP P . Initially, 1 2||AP P is in

two states (11, 21) simultaneously; then, execute ,a a simultaneously to obtain states (12,

22) simultaneously. Next, to obtain states (13, 22), c must wait for c to appear to execute

simultaneously. When c appears, 1 2||AP P can obtain states (14, 23) simultaneously.

Therefore, we describe parallel composition as a combination of multiple process states.

We can describe any process expression using meta process expressions a , √, .a b , and

a b . The PADMP model construction algorithm is constructed by meta process

expressions.

PADMP Algorithm:

1: Input: PEs /* process expressions list*/

2: Output: PADMP

3: Procedure:

4: PE *pe; /*process expression */

5: process p1, p2; /*process*/

6: state *s; /*state*/

7: while(i<PEs→peNum) {/* Iterate through process expressions*/

8: pe=PEs[i++]; /*get a process expression*/

9: for(; *pe; pe++){/* construct model for process expression */

10: switch(*pe){

11: default: /* construct action*/

12: s = state(1，*pe, NULL, NULL);

13: push(process(s, outlist(s->out));

14: break;

15: case '.':/*process sequential operator (.)*/

16: p2 = pop();p1 = pop();

17: patch(p1.out, p2.start);/*make the output link of p1 point to p2*/

18: push(process(p1.start, p2.out));/*push new process into stack*/

19: break;

20: case '+': /* process choice operator (+)*/

21: p2 = pop();p1 = pop();

22: s = state(2,NULL, p1.start, p2.start);

23: push(process(s, append(p1.out, p2.out))); /*use append to connect two

pointers and return the result*/

24: break;

25: case '||A': /* process parallel operator (||A)*/

26: p2 = pop();p1 = pop();

27: push(process(join(p1.statelist,p2.statelist),append(p1.out, p2.out))); /* use join

to merge satatelist*/

28: break;

974 Wang et al.: A Process Algebra-Based Detection Model for Multithreaded Programs in Communication System

29: case '√': /*process successful termination (√)*/

30: s = state(0，√, NULL, NULL);

31: push(process(s, NULL);

32: break;}}

33: }

The action procedure is shown in Fig. 8(a), the sequential composition operator (.)

procedure is shown in Fig. 8(b), and the alternative composition operator (+) procedure is

shown in Fig. 8(c). According to (. .P Q P Q   ), Fig. 8(c) is equivalent to Fig. 8(d).

Therefore, the alternative composition operator (+) procedure is correct. The parallel

composition operator (||A) procedure is shown in Fig. 7.

a

(a)

(c)

a b

(b)

a

b
b

a

(d)

Fig. 8. Results of meta process expression compilation

4. Behaviors Detection

According to the operational semantics of process algebra (the above definitions and laws), we

can obtain a process migration rule and a behavior decision rule, and obtain a behavior

detection algorithm based on the PADMP model.

Process Migration Rule:

(1) . . cc Q d R Q  ， . . dc Q d R R  ；

According to (1) and Law 8, we know that, if a A and c A , then

. || . || .a

A Aa P c Q P c Q .

According to Law 9, we know that, if ,a b A , then
. || . || .

. || . . ||

a

A A

b

A A

a P b Q P b Q

a P b Q a P Q




.

(2) According to Law 10, we obtain . . ()aa Q a R Q R   .

(3) . 0ba P ，if a b

Let 0s denote the first action of behavior trace s ; 's denotes the other actions; i.e.,
'

0 ,s s s   . /P s denotes a process, which is behavior after all trace s actions have

been executed. Therefore, '

0/ (/)/P s P s s     .

Behavior Decision Rule:

Suppose model P was obtained by static analysis, and model R was obtained by

detection at runtime. If and only if () ()traces R traces P , then R is a normal behavior.

Behavior Detection Algorithm:

1) Monitoring the system calls of a program in real time forms a system call queue.

2) If the queue is null, then return TRUE to indicate that behaviors are normal. Otherwise,

remove a system call from the head of the queue and place it into the PADMP model to

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014 975

Copyright ⓒ 2014 KSII

determine a match. If there is a match, loop (2); else proceed to (3).

3) Determine if actions in the current state set of the PADMP model belong to

synchronous set (A). If they do not belong to A, return FALSE and issue an alert. If they

belong to A, perform a breadth-first search of the current state set and execute a synchronous

action. If the execution is successful, update the current state set and proceed to (4).

Otherwise, return FALSE and issue an alert.

4) Match actions in the update state set. If the match is successful, proceed to (2);

otherwise proceed to (3).

5. Simulation Results and Analysis

Here, we report experimental results for the PADMP model and behavior detection rules.

5.1 Behavior Detection

Fig. 9 is sample C code for a multithreaded program. According to the explanation presented

in Section 3.1, we obtain the corresponding function CFG based on the Linux IA32

operating system, shown in Fig. 10. We only map a base block that contains a RET

instruction into the successful termination process √. Next, we rewrite the assembly

code.
void* Thread1(void* arg) {

pthread_mutex_lock(&lock);

a -= 50;

sleep(5);

b += 50;

pthread_mutex_unlock(&lock);

}

void* Thread2(void* arg) {

sleep(1);

pthread_mutex_lock(&lock);

printf("%d\n", a + b);

pthread_mutex_unlock(&lock);

}

int main() {

pthread_t tida, tidb;

pthread_mutex_init(&lock, NULL);

pthread_create(&tida, NULL, Thread1, NULL);

pthread_create(&tidb, NULL, Thread2, NULL);

pthread_join(tida, NULL);

pthread_join(tidb, NULL);

return 1;

}

Fig. 9. C code for a multithreaded program

We analyze the assembly code, obtain the corresponding system call, and extract the

arguments. For simplicity, we rename the system calls that are in boldface in Fig. 10. For

example, pthread_mutex_lock is renamed futex and pthread_mutex_unlock is renamed

lock(m) or unlock(m) where m denotes mutual exclusion access to the critical area address.

In addition, clone, which is called by pthread_create, is renamed create. Next, according to

the algorithm presented in Section 3.2, we can obtain the process expression of the functions

presented in Fig. 10.

1

1 1 2

().

(1). || (2).

main

thread A thread

P init m P

P create P create P





1 (). (5). (). (1). (1).threadP lock m sleep unlock m exit join √

2 (1). (). . (). (2). (2).threadP sleep lock m writeunlock m exit join √

According to the method presented in Section 3.3, process 1P of a main function can be

rewritten to add concurrency operators to process expressions for mutual exclusion.

(). ().L lock m unlock m L

976 Wang et al.: A Process Algebra-Based Detection Model for Multithreaded Programs in Communication System

1 1 2(1). || (2). ||thread A thread AP create P create P L

{ (), (), (), ()}A lock m unlock m lock m unlock m

lea -0x8(%ebp),%eax

mov %eax,(%esp)

call 0x8048450 <pthread_create@plt>

lea -0xc(%ebp),%eax

mov %eax,(%esp)

call 0x8048450 <pthread_create@plt>

 movl $0x8049884,(%esp)

 call 0x8048440 <pthread_mutex_lock@plt>

mov %eax,(%esp)

 call 0x80483e0 <pthread_join@plt>

mov %eax,(%esp)

call 0x80483e0 <pthread_join@plt>

lea -0x4(%ecx),%esp

ret

sub $0x32,%eax

mov %eax,0x8049874

movl $0x5,(%esp)

call 0x8048460 <sleep@plt>

leave

ret

mov 0x8049878,%eax

add $0x32,%eax

mov %eax,0x8049878

movl $0x8049884,(%esp)

call 0x8048410

<pthread_mutex_unlock@plt>

movl $0x1,(%esp)

call 0x8048460 <sleep@plt>

movl $0x8049884,(%esp)

call 0x8048440 <pthread_mutex_lock@plt>

add %edx,%eax

mov %eax,0x4(%esp)

movl $0x8048750,(%esp)

call 0x8048420 <printf@plt>

movl $0x8049884,(%esp)

call 0x8048410

<pthread_mutex_unlock@plt>

leave

ret

create(1)

movl $0x8049884,(%esp)

call 0x8048430

<pthread_mutex_init@plt>

create(2)

init(m)

lock(m)

lock(m)

unlock(m) unlock(m)

sleep(5)

sleep(1)

write

exit(1) exit(2)

join(1) join(2)

Fig. 10. Corresponding function CFG

According to Law 7 presented in Section 3.4, the process expression mainP satisfies the

sequential relationship, as shown in Fig. 11. Detection processing is obtained by the behavior

detection algorithm. Suppose that we capture the following call sequence at runtime:

(init(m), create(1), create(2), lock(m), sleep(1), sleep(5), unlock(m), exit(1), lock(m),

write, unlock(m), exit(2), join(1), join(2))

According to Laws 5, 8, and 9, and the process migration rule, the final sequence can

migrate successfully to the termination process. This indicates that it is a normal sequence.

Suppose we capture the following call sequence:

(init(m), create(1), create(2), lock(m), sleep(1), sleep(5), lock(m), write, unlock(m),

exit(2), unlock(m), exit(1), join(1), join(2))

If substituting the second lock(m) for the process expression mainP causes downtime 0 ,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014 977

Copyright ⓒ 2014 KSII

then the sequence is an abnormal sequence and an alert will be issued. We can test and verify

that the sequences acting against program timing cause downtime.

Main Thread1 Thread2

init(m)

create(1)

create(2)

lock(m)

sleep(5)

unlock(m)

exit(1)

sleep(1)

lock(m)

write

unlock(m)

exit(2)

join(1)

join(2)

√

T T T

Fig. 11. Sequence diagram for C code

5.2 Deadlock Analysis

Fig. 12 illustrates a deadlock error caused by cyclic lock acquisition. This example spawns

two threads, each of which attempt to acquire two locks A and B. However, the threads

attempt to obtain the locks in different orders: thread 1 acquires lock A then lock B, while

thread 2 acquires lock B then lock A. By following the behavior detection steps presented in

Section 5.1, the following process expressions can be obtained.

1 2|| ||thread A thread AP P P L

1 1(). 1. (). 2. (). ().thread threadP lock a systemcall lock b systemcall unlock b unlock a P

2 2(). 3. (). 4. (). ().thread threadP lock b systemcall lock a systemcall unlock a unlock b P

Fig. 12. Deadlock example

We can also obtain process expressions for the mutual exclusion lock and synchronous

action set.

|| ((). ().) || ((). ().)a A b a A bL L L lock a unlock a L lock b unlock b L 

thread1 () {

lock (a);

systemcall1();

lock (b);

systemcall2();

unlock (b);

unlock (a);

}

thread2 () {

lock (b);

systemcall3();

lock (a);

systemcall4();

unlock (a);

unlock (b);

}

978 Wang et al.: A Process Algebra-Based Detection Model for Multithreaded Programs in Communication System

{ (), (), (), (), (), (), (), ()}A lock a lock b unlock a unlock b lock a lock b unlock a unlock b
According to Laws 5 and 6, the following calculations can be performed.

1

2

. 1. (). 2. (). (). ||

. 3. (). 4. (). (). ||

(().) || (().) / ((), ())

thread A

thread A

a A b

P systemcall lock b systemcall unlock b unlock a P

systemcall lock a systemcall unlock a unlock b P

unlock a L unlock b L lock a lock b







1

2

1. 3.((). 2. (). (). ||

(). 4. (). (). || (().) || (().)

3. 1.(().

thread A

thread A a A b

systemcall systemcall lock b systemcall unlock b unlock a P

lock a systemcall unlock a unlock b P unlock a L unlock b L

systemcall systemcall lock b systemc



 1

2

2. (). (). ||

(). 4. (). (). || (().) || (().)

0

thread A

thread A a A b

all unlock b unlock a P

lock a systemcall unlock a unlock b P unlock a L unlock b L



Thus, it can be seen that program deadlock errors can be detected by the proposed

PADMP model.

5.3 Efficiency Analysis

Here, we evaluate a parallel composition that contains two processes.

P=a.b.√||Ac.d.√

 =a.(b.√||Ac.d.√)+c.(a.b.√||Ad.√)

=a.b.(√||Ac.d.√)+a.c.(b.√||Ad.√)+c.a.(b.√||Ad.√)+c.d.(a.b.√||A√)

=a.b.c.d.√+a.c.b.(√||Ad.√)+a.c.d.(b.√||A√)+c.a.b.(√||Ad.√)+c.a.d.(b.√||A√)+c.d.a.b.√

=a.b.c.d.√+a.c.b.d.√+a.c.d.b.√+c.a.b.d.√+c.a.d.b.√+c.d.a.b.√

From the above formula, if a parallel composition contains two processes (n=2), then six

behavior traces are obtained. With increasing n, the number of behavior traces increases by

order of magnitude. Adopting a training method will result in a state space explosion, which

leads to low space–time efficiency. However, in this paper, space consumption is the cost

necessary to maintain n state list; the scale is equal to the number of actions, i.e., linear

growth with n. The PADMP model uses a state set to express concurrent and

nondeterministic options without a backtrack algorithm. If the length of a process expression

is m and an n status list must be maintained, then, total time cost is O (mn). Thus, running

time is linear; increasing m will not increase the operational cost significantly.

Experimental environment: Linux rhel-server-5.4, Intel dual-core 1.73 GHz CPU, 2 GB

RAM. Three test programs are listed in Table 1.
Table 1. Test Programs

Program Action num Concurrent-action num User thread

Main 12 4 3

Philosopher 72 48 5

Reader-writer 266 34 n

We construct PADMP models for the test programs and record space–time consumption.

By modifying the source code, we simulate data race, deadlock, and synchronous

abnormality scenarios that were caused by design errors or intrusion. We use the PADMP

model to detect the scenarios and record the space–time consumption. All abnormalities are

detected. The time consumption for modeling and detection is shown in Fig. 13, and the

space consumption is shown in Fig. 14.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014 979

Copyright ⓒ 2014 KSII

0

1

8

12(ns)

50 100 150 200 250

T
im

e

Process Expression

Length

300 350

Modeling Time

Detecting Time

Main
Philosoph

er

Reader-

writer

0

500

200

0

6000

50 100 150 200 250

S
p

a
c
e

C
o

n
s
u

m
p

ti
o

n

Total Number of

Action

300 350

Modeling

Detecting

Main

Philosoph

er

Reader-

writer

1000

300

0

400

0

500

0

(k)7000

5.4 Experimental Design

These test programs and our runtime monitor run on Linux OS (rhel-server-5.4) on Intel

1.73Ghz cpu with 2GB of RAM. Behavior detection experiment program is made up of

static analysis unit, modeling unit and detection unit. Static analysis unit is a tool program

running in user-state, it reads the executable file and generates the corresponding process

expressions files *.pe. According to laws presented in Section 3.4, modeling unit converts

files *.pe to files *padmp using meta process expressions a , √, .a b , a b . File *.padmp

stores chain table structures of the corresponding process expressions. Detection unit uses

hook technology to intercept information, which is the entry address of system calls service

function in the sys_call_table with real-time software running, monitors and obtains system

call sequences. By putting system call sequences into the file *.padmp, detection unit detects

and reports the result, as is shown in Fig. 15.

Program

CFG

the binary code
 the system call

sequence

a

P2

P3

P1

P4

b c

d
e

Process Expressions

0 0 0.(. || .)AP a b dP c eP
Law

match

detection unit 11 12

b
13 14

21 22 23
d

24
a

a

c

cP1

P2

a a b

a

b
b

a

result

*.padmp

*.pe

modeling unit

Fig. 13. Time Consumption

Fig. 14. Space Consumption

980 Wang et al.: A Process Algebra-Based Detection Model for Multithreaded Programs in Communication System

Fig. 15. Architecture of the model

We construct the models for some applications, such as apache, wu-ftpd, mysql and sqlite.

Fig. 16 and Fig. 17 show the result of space and time overhead respectively.

0

4

8

1

2

Apache Mysql SQLite

 objective applications runing

PADMP modeling

PADMP detecting
O

v
e

rh
e

a
d

(%
)

wu-ftpd

0

8

16

2

4

Apache Mysql SQLite

 objective applications runing

PADMP modeling

PADMP detecting

O
v
e

rh
e

a
d

(%
)

wu-ftpd

5.4.1 Effectiveness of the PADMP Model

As can be seen from experimental results, the time and space overheads of PADMP model

are acceptable. During modeling the overheads are high, but the PADMP model can perform

on real applications well during detection.

5.4.2 Precision of the PADMP Model

Precision is behavior detection capability of model. We choose FTP server wu-ftpd-2.6.0,

which is widely used on the Linux platform as the test objects. Wu-ftpd-2.6.0 exists multiple

vulnerabilities, we select some representative vulnerabilities, and use existing programs to

attack, detection results are shown in Table. 2.
Table 2. Typical vulnerabilities of wu-ftpd-2.6.0 and test results

Vulnerability CVE Vulnerability type Test result

CVE-2000-0573 Format string overflow √

CVE-2001-0550 Heap overflow √

CVE-2004-0185 Stack overflow √

CVE-2004-0148 Logic error ×

The experimental results show that the prototype system can detect attacks based on stack

overflow, heap overflow and the format string overflow. The attack doesn't change the call

sequence for CVE - 2004-2004 vulnerabilities, it is similar to the mimicry attack, not being

detected. We can't test all types of attacks, but the results in Table. 2 partly prove the ability

of intrusion detection system.

Fig. 17. Result of time overhead

Fig. 16. Result of space overhead

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014 981

Copyright ⓒ 2014 KSII

6. Conclusions

In this paper, the problem of intrusion attempts on multithreaded programs is investigated.

Based on process algebra, the PADMP model is presented to solve the concurrent behavior

description and detection problem. Experimental results show that this method can

accurately detect errors in multithreaded programs, such as data race, deadlock, and

abnormal time sequence errors. Moreover, all test programs show an order of magnitude

improvement in space–time complexity. However, the PADMP model doesn't consider the

parameters of the system calls, so it can't effectively detect attacks based on data flow. We

will solve this problem next step.

References

[1] S. Forrest, S.A. Hofmeyr, A. Somayaji and T.A. Longstaff, “A sense of self for UNIX

processes,” in Proc.of the IEEE Symp. on Security and Privacy. Oakland: IEEE Press, pp.

120-128, May 6-8, 1996. Article (CrossRef Link)

[2] S.A. Hofmeyr, S. Forrest and A. Somayaji, “Intrusion detection using sequences of system

calls,” Journal of Computer Security, vol. 6, no. 3, pp. 151-180, January, 1998. Article

(CrossRef Link)

[3] P. Helman and J.Bhangoo, “A statistically based system for prioritizing information exploration

under uncertainty,” IEEE Trans.on Systems,Man and Cybernetics, Part A:Systems and Humans,

vol. 27, no. 4, pp. 449-466, July, 1997. Article (CrossRef Link)

[4] Wenke Lee and Salvatore J. Stolfo, “Data mining approaches for intrusion detection,” in Proc.

of the 7th USENIX Security Symp. San Antonio, pp. 26-29, January, 1998. Article (CrossRef

Link)

[5] D. Wagner and D. Dean, “Intrusion detection via static analysis,” in Proc. of the IEEE Symp.on

Security and Privacy.Oakland:IEEE Press, pp. 156-168, May 14-16, 2001. Article (CrossRef

Link)

[6] J. Giffin, S. Jha and B. Miller, “Efficient context- sensitive intrusion detection,” in Proc. of the

11th Network and Distributed System Security Symp. San Diego, 2004. Article (CrossRef Link)

[7] R. Gopalakrishna, E.H. Spafford and J. Vitek, “Efficient intrusion detection using automaton

Inlining,” in Proc. of the IEEE Symp.on Security and Privacy. Oakland, CA, IEEE Press, pp.

18-31, May 8-11, 2005. Article (CrossRef Link)

[8] FU Jianming, TAO Fen and WANG Dan, “Software behavior model based on system objects,”

Journal of Software, vol. 22, no. 11, pp. 2716-2728, November, 2011. Article (CrossRef Link)

[9] H.H. Feng, J.T. Giffin, Y. Huang and S. Jha, “Formalizing sensitivity in static analysis for

intrusion detection,” in Proc. of the IEEE Symp.on Security and Privacy. Oakland, CA, IEEE

Press, pp. 194-208. May 9-12, 2004. Article (CrossRef Link)

[10] S. Savage, M. Burrows, G. Nelson and P. sobalvarro, “Eraser: A dynamic data race detector

for multi-threaded programs,” ACM Trans. on Computer Systems, vol. 15, no. 4, pp. 391-411,

November, 1997. Article (CrossRef Link)

[11] D. Schonberg, “On-the-Fly detection of access anomalies,” in Proc. of the ACM SIGPLAN Conf.

on Programming Language Design and Implementation (PLDI). ACM Press, vol. 24, no. 7, pp.

285-297, July, 1989. Article (CrossRef Link)

[12] L.Q. Wang and S.D. Stoller, “Runtime analysis of atomicity for multi-threaded programs,” IEEE

Trans. on Software Engineering, vol. 32, no. 2, pp. 93-110, February, 2006. Article (CrossRef

Link)

[13] K. Deguang, Tan XB and Xi HS, “Hidden Markov Model for Multi-Thread Programs Time

Sequence Analysis,” Journal of Software , vol. 21, no. 3, pp. 461-472, March, 2010. Article

(CrossRef Link)

[14] Z. Rakamaric, “STORM: static unit checking of concurrent programs,” In Proc. of the 32nd

http://www.iciba.com/time_sequence
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hofmeyr,%20S.A..QT.&searchWithin=p_Author_Ids:37355644600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Somayaji,%20A..QT.&searchWithin=p_Author_Ids:37357125900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Longstaff,%20T.A..QT.&searchWithin=p_Author_Ids:37324010000&newsearch=true
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=502675&reason=concurrency
http://iospress.metapress.com/content/m19jj5lnhbeb0bvf/
http://iospress.metapress.com/content/m19jj5lnhbeb0bvf/
http://dx.doi.org/10.1109/3468.594912
https://www.usenix.org/legacy/publications/library/proceedings/sec98/full_papers/full_papers/lee/lee_html/lee.html
https://www.usenix.org/legacy/publications/library/proceedings/sec98/full_papers/full_papers/lee/lee_html/lee.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=924296&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=924296&tag=1
http://www.isoc.org/isoc/conferences/ndss/04/proceedings/Papers/Giffin.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1425056
http://dx.doi.org/10.3724/SP.J.1001.2011.03923
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jha,%20S..QT.&searchWithin=p_Author_Ids:37279267300&newsearch=true
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1301324
http://dx.doi.org/10.1145/265924.265927
http://dl.acm.org/citation.cfm?id=74844
http://dx.doi.org/10.1109/TSE.2006.1599419
http://dx.doi.org/10.1109/TSE.2006.1599419
http://202.206.242.23/kns55/loginid.aspx?uid=&p=Navi%2FBridge.aspx%3FLinkType%3DBaseLink%26DBCode%3Dcjfq%26TableName%3DCJFQbaseinfo%26Field%3DBaseID%26Value%3DRJXB
http://dx.doi.org/10.3724/SP.J.1001.2010.03521
http://dx.doi.org/10.3724/SP.J.1001.2010.03521

982 Wang et al.: A Process Algebra-Based Detection Model for Multithreaded Programs in Communication System

ACM/IEEE International Conference on Software Engineerin, Cape Town, South Africa , vol. 2,

pp. 519-520, May 2-8, 2010.Article (CrossRef Link)

[15] E. D. Berger, Ting Yang, Tongping Liu and Gene Novark, “Grace: safe multithreaded

programming for C/C++,” in Proc. of the 24th ACM SIGPLAN conference on Object oriented

programming systems languages and applications, vol. 44, no. 10, pp. 81-96, October, 2009.

Article (CrossRef Link)

[16] N. R. Tallent and J. M. Mellor-Crummey, “Effective Performance Measurement and Analysis of

Multithreaded Applications,” in Proc. of the 14th ACM SIGPLAN symposium on Principles and

practice of parallel programming, vol. 44, no. 4, pp. 229-240, April, 2009 Article (CrossRef

Link)

[17] N. R. Tallent, J. M. Mellor-Crummey and A. Porterfield, “Analyzing Lock Contention in

Multithreaded Applications,” in Proc. of the 15th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, vol. 45, no. 5, pp. 269-280, May, 2010. Article (CrossRef

Link)

[18] J. A. Joao, M. A. Suleman, O. Mutlu and Y. N. Patt, “Bottleneck Identification and Scheduling

in Multithreaded Applications,” in Proc. of the seventeenth international conference on

Architectural Support for Programming Languages and Operating Systems, vol. 40, no. 1, pp.

223-234, March, 2012. Article (CrossRef Link)

[19] J.H. Morris, “Lambda-calculus Models of Programming Languages,” MIT, Cambridge, MAC, U

SA, 1968. Article (CrossRef Link)

[20] H. Bekic, “Towards a mathematical theory of processes,” IBM Laboratory, Vienna: Technical

Report TR, 1971. Article (CrossRef Link)

[21] G.J. Milne and R. Milner, “Concurrent processes and their syntax,” Journal of the ACM, vol. 26,

no. 2, pp. 302-321, April, 1979. Article (CrossRef Link)

[22] D. Caromel and L.A. Henrio, “Theory of Distributed Objects,” Berlin:Springer-Verlag, 2005.

Article (CrossRef Link)

[23] D. Caromel, L. Henrio and B.P. Serpette, “Asynchronous sequential processes,” Information and

Computation, vol. 207, no. 4, pp. 459-495, April, 2009. Article (CrossRef Link)

[24] L. Cardelli and Gordon A.D, “Mobile Ambients,” Theoretical Computer Science, vol. 240, no. 1,

pp. 177-213, June, 2000. Article (CrossRef Link)

[25] L. Cardelli, G. Ghelli and A.D. Gordon, “Types for the ambient calculus,” Types for the Ambient

Calculus, vol. 177, no. 2, pp. 160-194, September, 2002. Article (CrossRef Link)

[26] R. Milner, “A calculus of communicating systems,” Lecture Notes in Computer Science,

Springer-Verlag New York, Inc. Secaucus, NJ, USA, 1980. Article (CrossRef Link)

[27] J. Hopcroft, “An nlogn algorithm for minimizing states in a finite automaton,” Theory of

Machines and Computations, New York: Academic Press, January, 1971. Article (CrossRef

Link)

[28] C. Hoare, “Communicating sequential processes,” Communications of the ACM , vol. 21, no. 8,

pp. 666-677, August, 1978. Article (CrossRef Link)

http://dx.doi.org/10.1145/1810295.1810460
http://dx.doi.org/10.1145/1640089.1640096
http://dl.acm.org/citation.cfm?id=1504210
http://dl.acm.org/citation.cfm?id=1504210
http://dx.doi.org/10.1145/1693453.1693489
http://dx.doi.org/10.1145/1693453.1693489
http://dx.doi.org/10.1145/2150976.2151001
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0683394
http://link.springer.com/chapter/10.1007/BFb0048944
http://dx.doi.org/10.1145/322123.322134
http://link.springer.com/content/pdf/10.1007/b138812.pdf
http://dx.doi.org/10.1016/j.ic.2008.12.004
http://dx.doi.org/10.1016/S0304-3975%2899%2900231-5
http://www.sciencedirect.com/science/article/pii/S0890540101931219
http://dx.doi.org/10.1007/3-540-10235-3
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0719398
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0719398
http://dx.doi.org/10.1145/359576.359585

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014 983

Copyright ⓒ 2014 KSII

Tao Wang is currently having her Ph.D study in Information Science

and Engineering, Yanshan University, Qinhuangdao, Hebei, China.

She received her M.S. degree in the School of Information Science

and Engineering, Yanshan University, Qinhuangdao, China in 2009.

She is now working at Hebei Normal University of Science &

Technology as a lecturer. Her current research interests are in the areas

of intrusion detection and collaboration computing.

Limin Shen is currently a professor in the School of Information

Science and Engineering, Yanshan University. He received his M.S.

degree in computer applicationform, Hefei University of Technology,

China, in 1987. He received his Ph.D degree in electronic circuit and

system, Yanshan University, China, in 2005. He worked in

Department of Computer Science, Illinois Institute of Technology,

USA from 2005 to 2007 as a visiting scholar. His main research

interests are focusing on flexible software technology and information

security, which has been funded partially by the National Natural

Science Foundation of China and Chinese Government.

Chuan Ma is currently having his Ph.D study in Information Science

and Engineering, Yanshan University. He received his B.S. and M.S.

degrees in the School of Information Science and Engineering,

Yanshan University, Qinhuangdao, China in 2003 and 2009,

respectively. He is an engineer with the School of Information Science

and Engineering Yanshan University. His current research interests

include information security and software formal methods.

