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Abstract 

 
Concurrent behaviors of multithreaded programs cannot be described effectively by 

automata-based models. Thus, concurrent program intrusion attempts cannot be detected. To 

address this problem, we proposed the process algebra-based detection model for 

multithreaded programs (PADMP). We generate process expressions by static binary code 

analysis. We then add concurrency operators to process expressions and propose a model 

construction algorithm based on process algebra. We also present a definition of process 

equivalence and behavior detection rules. Experiments demonstrate that the proposed 

method can accurately detect errors in multithreaded programs and has linear space–time 

complexity. The proposed method provides effective support for concurrent behavior 

modeling and detection. 
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1. Introduction 

Multithreading is an important mechanism for supporting program structuring and parallel 

computation. With the multithread technique, the application prospects of concurrent 

systems are becoming increasingly extensive. However, concurrent systems have specific 

characteristics, such as programming complexity, randomness of running results, and 

reproducibility. Therefore, security for concurrent systems is a concern, and constructing a 

model to describe and detect concurrent behaviors is an effective solution. 

1.1 Related Work 

Constructing a valid and precise program model is a challenging task. Because the original 

development of a model that takes advantage of the system call sequence for normal 

program behavior was originally presented by Forrest et al. [1], many scholars have 

researched software behavior using the system call. These studies are based on three basic 

techniques for model construction: system call short sequences [2-4], automata [5-8], and the 

Virtual Path [9]. Of these techniques, modeling based on system call short sequences is 

efficient and can be implemented easily. However, this method is imprecise, and these 

intrusion detection models are much more prone to false positives. Compared with short 

sequences, branch and loop structures of programs can be expressed. Modeling based on 

automata improves the precision of behavior modeling and reduces the false positive rate. 

Unfortunately, these models still have some limitations. For example, impossible paths, 

prohibitively high space–time complexity, and they are unsuitability for analyzing 

concurrent behaviors.  

For concurrent behaviors, previous research has focused on two basic techniques: data 

race errors and timing analysis. Savage et al. discussed the potential data race problems 

based on the Lockset detection method when multiple threads access the same shared 

variables without locking [10]. Schonberg et al. analyzed data race problems that visited 

order uncertain, based on happen-before method [11]. Wang et al. presented a multilockset 

algorithm that considered the relation of happen-before and detected race condition at 

runtime [12]. Kong Deguang et al. presented a timing analysis method for multithreaded 

programs based on a hidden Markov model [13]. However, designing such models is 

complex because it is difficult to abstract a concurrent environment. Moreover, the 

space–time complexity is prohibitively high and unsuitable for practical use. 
Modern software systems are prevalently concurrent; thus, they are difficult to get right. 

Unusual or unexpected behaviors in concurrent programs are difficult to discover using 

traditional detection techniques. Z. Rakamaric described a scalable, automatic, and precise 

approach to static unit checking of concurrent programs implemented in a tool called 

STORM [14]. To eliminate concurrency errors for a class of multithreaded programs, Berger 

et al. presented Grace, a software-only runtime system [15]. Tallent et al. described how to 

measure and attribute arbitrary performance metrics for high-level multithreaded 

programming models [16]. In addition, a technique to measure and analyze lock contention 

has been implemented [17]. To increase the reliability of multithreaded programs, a 

cooperative software–hardware mechanism to increase the performance of multithreaded 

applications was proposed, which was the first generalized mechanism to identify the most 

critical bottlenecks that cause thread waiting on multithreaded applications and accelerate 

those bottlenecks [18]. 
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1.2 Main Contributions 

We construct a process algebra-based detection model for multithreaded programs in a 

communication system. The basic idea is as follows: A system call is mapped to an action by 

static binary code analysis; a control flow graph (CFG) of the program is mapped to a 

process; process expressions are generated according to the process algebra algorithms; 

concurrency operators are added into process expressions; model construction algorithm and 

behavior detection rules are defined; and the process algebra-based detection model for 

multithreaded programs (PADMP) is used to detect concurrent behaviors. Our primary 

contributions can be summarized as follows:  

1) The PADMP model enables efficient multithreaded program modeling. The PADMP 

model represents a substantial improvement in statically constructed multithreaded program 

models because it can describe concurrent behaviors of a multithreaded program effectively. 

2) This method is also suitable for sequential behavior modeling and detection. To the best 

of our knowledge, we are the first to apply process algebra to behavior modeling, which is a 

profitable attempt in the field of multithreaded program behavior detection. 

3) According to the properties of process algebra, some definitions and laws are given to 

provide a theoretical framework for concurrent behaviors. By reducing and merging process 

expressions, the PADMP model produces a smaller state space, moreover, it is complete.  

The main advantage of the proposed PADMP model is that it can accurately detect errors 

in multithreaded programs, such as data race, deadlock, and abnormal time sequence errors. 

All test programs show an order of magnitude improvement in space–time complexity. 

1.3 Organization of the Paper 

The remainder of this paper is organized as follows. In Section 2, we introduce process 

algebra. In Section 3, the PADMP model construction algorithm is discussed. Section 4 

presents the behavior detection rules. An experimental evaluation is discussed in Section 5, 

and we conclude the paper in Section 6. 

2. Process Algebra 

Process algebra is a mathematical tool used for depicting concurrent systems [19-20], and is 

used for researching concurrent, distributed, interactive systems [21]. At present, the 

Asynchronous Sequential Processes (ASP) [22-23] and Ambient Calculus [24-25] have more 

functions to describe the behavior of asynchronous concurrent system in theory research. 

This paper introduces process algebra for multithreaded programs modeling by extending its 

algorithms and describing the interaction of behaviors based on system calls. We extract a 

common subset of process algebra. Let Act be a finite set of given actions (A). The syntax 

specifications are defined as follows: 

1 2 1 2:: 0 | | . | / | | ||AP a P P L P P P P √  
Their corresponding meanings are as follows: 

1) 0  stands for process down time, no action is performed.√stands for process 

terminated successfully.  

2) .a P  stands for executable action a , then transformed into 

process P , { }a Act   ;   stands for unobservable action. Actions in this paper are the 

same as actions in CCS [26], divided into action ( a ) and co-action ( a ), obviously a a .  

http://www.iciba.com/time_sequence
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3) /P L stands for action ( a ) in P appearing in L will be hided and be replaced 

by unobservable action   at runtime. 

4) 1 2P P  stands for the choice of 1P or 2P , according to the process subordinated 

by the following actions. 

5) 1 2||AP P  means that if action ( a ) in 1P  and co-action ( a ) in 2P  are 

subordinated to set A , then 1P and 2P execute synchronously, while any other actions 

are executed asynchronously. 

Definition 1 Guarded Expression. The process expression begins with the prefix action. e.g., 

.P a Q , . .P a b R .  

Definition 2 Successful Termination Guarded Expression. The process expression that 

begins with the prefix action and ends with a successful termination process.  e.g., 

. .P a b √. 
Definition 3 Recursive Guarded Expression. The process expression that begins with the 

prefix action and ends with itself. e.g., .P a P .  
Definition 4 Behavior Trace. Suppose the process P can be defined as a finite state transition 

of the form: 11

0 1 1

n n

n n

a aa
P P P P P


   …  

1 2
, ,

n
a a a … is the behavior trace of process P . The set of all possible behavior 

traces is denoted by ( )traces P . 

3. Model Construction Infrastructure 

We have developed the PADMP model. The development procedure can be divided into four 

steps. First, static binary code analysis for multithreaded programs was employed to generate 

CFGs for each function. Second, the process expressions were generated from the CFGs. 

Third, the process expressions were rewritten by adding concurrent operations. Finally, the 

process algebra-based PADMP model was constructed. 

3.1 From Binary Code to CFGs 

We use static binary code analysis to generate a CFG because it does not require human 

interaction, determination of representative data sets, or access to a program’s source code. 

However, it should be noted that it is unsuitable for interpreted-language analysis. The 

techniques to generate a CFG from binary code are very mature [6–7]. We use the 

executable editing library method to generate CFGs [6]. If the transformation of a flow 

chart does not contain any function call, it is regarded as an empty operation  . We 

eliminate all edges   using a previously reported reduction algorithm [27]. A 

corresponding example is given in Section 5.2. 

We replace library functions with system calls by comparing the library function and 

system call tables. The call instruction in assembly code calls library functions rather than 

system calls; thus, we must replace it with the corresponding system call. For example, sleep 

was replaced by nanosleep and printf was replaced by write. We then capture and analyze 

arguments. This is required to represent the behavior of a system call accurately. For example, 

we cannot know if semop execution is a P or V operation. 

3.2 From CFGs to Process Expressions 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014                   969 

Copyright ⓒ 2014 KSII 

We denote the CFGs as { , }G V E , which were generated according to the process 

discussed in Section 3.1. Here, V denotes vertices, and E denotes the directed edges that 

were marked with system calls. For example, Fig. 1 shows one possible CFG generated from 

some binary code. We use the adjacency list to store it, shown in Fig. 2. 

a
P2

P3

P1 P4

P5

P6 P7

b

c

d

e

f

g

h

i

j

 
Fig. 1. A CFG generated from some binary code 
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x

firstedg

e
adjvex nextinfo

 
Fig. 2. The adjacency list of CFG in Fig.1 

The algorithm that generates the process expressions from the CFGs is as follows. 

(1) Find out the loop entry 

According to sequential composition, if
0 1

1 2

.

.

P a P

P b P





 , then expand 0 2. .P a b P  and cut P1. 

But if P1 in a loop， e.g., 
0 1

1 1

.

.

P a P

P c P





, then expand and obtain

0 1

1 1

. .

.

P a c P

P c P





. The equations do 

not be cut, thus they should not be expanded. In a loop, there is a node called the loop entry 

with the property that no other node in the loop has a predecessor outside the loop .That is, 

every path from the entry of the entire flow graph to any node in the loop goes through the 

loop entry. Therefore, we should find out the loop entry and don’t expanded it.  

By comparing the vertex and adjvex as shown in Fig. 2, if the number of vertexes is 

greater than or equal to adjvex, then the adjvex is the loop entry. The adjacency list of Fig. 2 

has three loops and has two loop entries (node 2(3≥2,5≥2) and node 6(6≥6)).  
(2) Depth-first search to generate the process expressions  

Selecting the loop entries and CFG entry (node 1, as shown in Fig. 1) as the root 

separately, we adopt depth-first search algorithm. We make the parent-child nodes sequential 

composition and make brother nodes alternative composition. To ensure that the loop entries 

do not be expanded, when we search a node that belongs to the loop entry, we backtrack to 

its parent node. 

Fig. 1 has three nodes (1,2,6) as the root, so we get three process expressions: 

P1=a.P2 

P2=b.c.P2+d.(e.f.P2+g.P6+j.0)  

P6=h.P6+i.0 
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3.3 Adding Concurrency Operators to Process Expressions 

We obtain process expressions of functions according to the processes discussed in Sections 

3.1 and 3.2. However, the expressions are not marked as an action ( a ) or a coaction ( a ), 

which are used for concurrency. Thus, we must rewrite the process expressions. 

We abstract mutual exclusion operations for a critical area as lock ( l ) and unlock ( u ). 

Concurrency operators are added to process expressions in the following situations: 

(1) Situation 1. Multiple processes or threads: If the input edges are multiple processes or 

threads operation led by fork, vfork and clone, we should analyze jump sentences and 

change alternative composition of jump sentences to parallel composition(‘+’→’||A’), such 

as JLE and JNE. 

(2) Situation 2. Mutual exclusion: If the input edges are mutual exclusion operation led by 

lock and unlock, we should add concurrency operators of exclusion operation to process 

expressions. Some coactions ( a ) do not appear in expressions, such as critical sections and 

signal lamps. Thus, we create a process for each semaphore and make a parallel composition 

with the corresponding concurrent process. 

L0
L1

lock(m)

(a) (b)

unlock(m)

L2
L1

lock(m)

unlock(m)

Ln
Ln-1

lock(m)

unlock(m)

lock(m)

unlock(m)

… … 

 
Fig. 3. State transition diagram for mutual exclusion 

If the initial value of a binary semaphore is 1, its behaviors are described as 

1 1( ). ( ).L lock m unlock m L . Similarly, if the initial value of the binary semaphore is 0, its 

behaviors are described as 0 0( ). ( ).L unlock m lock m L , as is shown in Fig. 3(a). Therefore, 

the initial value of a signal lamp is n (n>0) and can be described as 1 1 1|| || ... ||n A A AL L L L , 

as is shown in Fig. 3(b). 
(3) Situation 3. Condition variable: If the input edges are condition variable operation led 

by lock, wait, signal and unlock, we should add concurrency operators of condition variable 

to process expressions. In concurrent programming, we construct a synchronization construct 

using a condition variable, which allows threads to have both mutual exclusion and the 

ability to wait (block) for a certain condition to become true, as shown in Fig. 4. 

Pcv0' Pcv0 

lock(m)
Pcv1' Pcv1 

signal(cv')

unlock(m)

wait(m,cv)

wait(m,cv)

 
Fig. 4. State transition diagram for a condition variable 

Its behaviors are described as follows. 

0 1( ). ( , ).cv cvP lock m wait m cv P  

1 1 0( , ). ( '). ( ).cv cv cvP wait m cv P signal cv unlock m P   

(4) Situation 4. Read/Write lock: If the input edges are read/write lock operation led by 

rlock, wlock and unlock, we should add concurrency operators of read/write lock to process 

expressions. A read/write lock allows concurrent read access to an object; however, it 

requires exclusive access for write operations, as shown in Fig. 5. 
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Pwl

Prwl

rlock(m)

unlock(m)

Prl2
Prl1

unlock(m)

Prln
Prln-1 

unlock(m)unlock(m)

… … 

wlock(m)

unlock(m)

rlock(m) rlock(m) rlock(m)

 
Fig. 5. State transition diagram for read/write lock 

Its behaviors are described as follows. 

|| ( ). ( ).rwl rl A rl rwlP P P wlock m unlock m P   

( ). ( ).rl rlP rlock m unlock m P  

||rl A rlP P  denotes a read-lock. In this pattern, multiple readers can read the data in 

parallel. ( ). ( ). rwlwlock m unlock m P  denotes a write-lock. When a writer is writing the data, 

readers will be blocked until the writer has finished writing.  

3.4 Constructing the PADMP Model 

Here, we present Definition 6 as an equivalence basis for the process expressions. Based on 

Definition 6, the laws of alternative composition and parallel composition are given. Then, 

we construct the PADMP model. 

Definition 5 Action. A system call is an action.  
In this paper, we map system calls to actions as the smallest unit to describe process 

behavior.  

Definition 6 Process equivalence. If there are two different processes P Q 
( ( ) ( )traces P traces Q ), i.e., ( ) ( )traces P traces Q and ( )traces Q  ( )traces P , then P is 

equivalent to Q . 

Our model is used to detect behaviors; thus, the process equivalence is based on the 

behavior trace. If two processes have the same behavior trace, they are considered equivalent. 

This also meets the requirements for behavior detection. However, this differs from 

equivalence based on mutual simulation of CCS [26]; therefore, the left distributive law of 

alternative composition states that ( . . .( )a P a Q a P Q   ). It also differs from equivalence 

based on refusal sets of CSP [28]. . .0 0P P P      is different from 0P P   in 

CSP. As long as the stop sign 0 appears in the alternative composition, the process is 

considered to result in downtime and is therefore unsafe. 

Here, we present some laws for alternative compositions and parallel compositions based 

on Definition 6. 

Law 1 || ||A AP Q Q P . 

Law 2 ( || ) || || ( || )A A A AP Q R P Q R . 

Law 3 
( ) || || ( )

|| ||

A A

A A

P Q R R P Q

P R Q R

  

 
. 

Law 4 0 is a zero element and √ is an identity; i.e., || 0 0AP  ; ||AP P√ . 

Law 5 If ,a a A , then . || . / .( || ) /A Aa P a Q a P Q a . 
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Law 6 If ,c d A  and d c , then . || . 0Ac P d Q  . 

According to Laws 5 and 6, we know the actions in A cannot execute independently. Thus, 

they must execute synchronously with corresponding coactions. 

Law 7 If ,a a A , then 
. || . || . /

.( || ) / .( || ) /

A A

A A

a P a Q a R a

P R a Q R a 




. 

Law 7 indicates that if processes .a P  and .a Q  compete for .a R , they must be 

concurrent with .a R . 

Law 8 If a A  and c A , then . || . .( || . )A Aa P c Q a P c Q . 

Law 9 If ,a b A , then . || . .( || . ) .( . || )A A Aa P bQ a P bQ b a P Q  . 

Laws 8 and 9 indicate that actions without in the set A execute asynchronously. 

Law 10 If . .P a Q a R  , then . . .( )P a Q a R a Q R    . 

Law 10 transforms a nondeterministic alternative process into a deterministic process. 

Thus, we obtain Law 11. 

Law 11 P P P  . 
Based on the above definitions and laws, we can construct actions, operators, and 

processes. 

1) Action. We use a triplet to describe an action. :: { , , }action syscall acttype paramlist . 

syscall  denotes system calls, acttype  denotes action type, including actions and coactions, 

and paramlist  denotes an argument list for syscall . 

2) Operators and states. The basic expressions, .a P , 1 2. .a P b P , and 1 2. || .Aa P b P , are 

made up of sequential, alternative, and parallel composition operators. We use a structure 

with at most two outputs to describe the states composed of different operators. The initial 

values of the structure are 1out NULL  and 2out NULL ; i.e., 

:: { , , 1, 2}state opetype action out out . opetype  denotes operator type, and 1out  and 2out  

are links pointing to the next state. 0opetype   indicates that, for a successful termination 

state (√), action   , and 1out  and 2out  are not used, as shown in Fig. 6(a). 1opetype   

indicates that sequential composition operator (.) uses only 1out , which describes the state 

shown in Fig. 6(b). 2opetype   indicates alternative composition operators, as is shown in 

Fig. 6(c). 

a
√

(a) (b) (c)

out1

out1

out2

 
Fig. 6. Graphs of stuct state when opetype has different values 

3) Process. A process is composed of actions and operators. We use two tuples to describe 

a process. i.e., :: { , }process statelist outlist . statelist  denotes the set of states. If the state  

in statelist  is greater than one, then suggest processes in the concurrent state. outlist  is a 

series of link lists pointing to the states. 

4) Construction algorithm  

According to the symmetric law, associative law, and distributive law of choice operators, 

any process that does not contain concurrency operators can be constructed by action a , 

successful termination √, .a b , and a b . In this paper, we refer to a , √, .a b , and 

a b  as meta process expressions. 
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Here, we describe the parallel composition operators (||A). Two concurrent processes 

1 2||AP P , { , , , }A a a c c  and '

1 1. . .P a b c P , '

2 2. . .P a c d P  are illustrated in Fig. 7. 

11 12

b
13 14

21 22 23
d

24
a

a

c

cP1

P2

 
Fig. 7. Concurrent processes 

According to the laws, we know the execution process of 1 2||AP P . Initially, 1 2||AP P  is in 

two states (11, 21) simultaneously; then, execute ,a a  simultaneously to obtain states (12, 

22) simultaneously. Next, to obtain states (13, 22), c must wait for c  to appear to execute 

simultaneously. When c  appears, 1 2||AP P  can obtain states (14, 23) simultaneously. 

Therefore, we describe parallel composition as a combination of multiple process states. 

We can describe any process expression using meta process expressions a , √, .a b , and 

a b . The PADMP model construction algorithm is constructed by meta process 

expressions. 

PADMP Algorithm:  

1: Input: PEs    /* process expressions list*/ 

2: Output: PADMP 

3: Procedure: 

4: PE *pe;  /*process expression */ 

5: process  p1, p2; /*process*/ 

6: state *s;  /*state*/ 

7: while(i<PEs→peNum) {/* Iterate through process expressions*/ 

8:  pe=PEs[i++]; /*get a process expression*/ 

9: for(; *pe; pe++){/* construct model for process expression */ 

10:  switch(*pe){ 

11:   default: /* construct action*/ 

12:        s = state(1，*pe, NULL, NULL); 

13:        push(process(s, outlist(s->out)); 

14:        break; 

15:   case '.':/*process sequential operator (.)*/ 

16:        p2 = pop();p1 = pop(); 

17:        patch(p1.out, p2.start);/*make the output link of p1 point to p2*/ 

18:        push(process(p1.start, p2.out));/*push new process into stack*/ 

19:        break; 

20:   case '+': /* process choice operator (+)*/ 

21:        p2 = pop();p1 = pop(); 

22:        s = state(2,NULL, p1.start, p2.start); 

23:       push(process(s, append(p1.out, p2.out))); /*use append to connect two 

pointers and return the result*/ 

24:       break; 

25:   case '||A': /* process parallel operator (||A)*/ 

26:        p2 = pop();p1 = pop(); 

27:       push(process(join(p1.statelist,p2.statelist),append(p1.out, p2.out))); /* use join 

to merge satatelist*/ 

28:       break; 
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29:   case '√': /*process successful termination (√)*/ 

30:        s = state(0，√, NULL, NULL); 

31:        push(process(s, NULL); 

32:        break;}} 

33:    } 

The action procedure is shown in Fig. 8(a), the sequential composition operator (.) 

procedure is shown in Fig. 8(b), and the alternative composition operator (+) procedure is 

shown in Fig. 8(c). According to ( . .P Q P Q    ), Fig. 8(c) is equivalent to Fig. 8(d). 

Therefore, the alternative composition operator (+) procedure is correct. The parallel 

composition operator (||A) procedure is shown in Fig. 7. 

a

(a)

(c)

a b

(b)

a

b
b

a

(d)
 

Fig. 8. Results of meta process expression compilation 

4. Behaviors Detection 

According to the operational semantics of process algebra (the above definitions and laws), we 

can obtain a process migration rule and a behavior decision rule, and obtain a behavior 

detection algorithm based on the PADMP model.  

Process Migration Rule: 

(1) . . cc Q d R Q  ， . . dc Q d R R  ； 

According to (1) and Law 8, we know that, if a A and c A , then 

. || . || .a

A Aa P c Q P c Q . 

According to Law 9, we know that, if ,a b A , then
. || . || .

. || . . ||

a

A A

b

A A

a P b Q P b Q

a P b Q a P Q




. 

(2) According to Law 10, we obtain . . ( )aa Q a R Q R   . 

(3) . 0ba P ，if a b   

Let 0s  denote the first action of behavior trace s ; 's  denotes the other actions; i.e., 
'

0 ,s s s   . /P s denotes a process, which is behavior after all trace s  actions have 

been executed. Therefore, '

0/ ( / )/P s P s s     . 

Behavior Decision Rule:  

Suppose model P  was obtained by static analysis, and model R  was obtained by 

detection at runtime. If and only if ( ) ( )traces R traces P , then R  is a normal behavior. 

Behavior Detection Algorithm:  

1) Monitoring the system calls of a program in real time forms a system call queue. 

2) If the queue is null, then return TRUE to indicate that behaviors are normal. Otherwise, 

remove a system call from the head of the queue and place it into the PADMP model to 
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determine a match. If there is a match, loop (2); else proceed to (3). 

3) Determine if actions in the current state set of the PADMP model belong to 

synchronous set (A). If they do not belong to A, return FALSE and issue an alert. If they 

belong to A, perform a breadth-first search of the current state set and execute a synchronous 

action. If the execution is successful, update the current state set and proceed to (4). 

Otherwise, return FALSE and issue an alert. 

4) Match actions in the update state set. If the match is successful, proceed to (2); 

otherwise proceed to (3). 

5. Simulation Results and Analysis 

Here, we report experimental results for the PADMP model and behavior detection rules.  

5.1 Behavior Detection 

Fig. 9 is sample C code for a multithreaded program. According to the explanation presented 

in Section 3.1, we obtain the corresponding function CFG based on the Linux IA32 

operating system, shown in Fig. 10. We only map a base block that contains a RET 

instruction into the successful termination process √. Next, we rewrite the assembly 

code. 
void* Thread1(void* arg) {  

pthread_mutex_lock(&lock);  

a -= 50;  

sleep(5);  

b += 50;  

pthread_mutex_unlock(&lock);  

}  

void* Thread2(void* arg) {  

sleep(1);  

pthread_mutex_lock(&lock);  

printf("%d\n", a + b);  

pthread_mutex_unlock(&lock);  

}  

int main() {  

pthread_t tida, tidb;  

pthread_mutex_init(&lock, NULL);  

pthread_create(&tida, NULL, Thread1, NULL);  

pthread_create(&tidb, NULL, Thread2, NULL);  

pthread_join(tida, NULL);  

pthread_join(tidb, NULL);  

return 1;  

} 

Fig. 9. C code for a multithreaded program 

We analyze the assembly code, obtain the corresponding system call, and extract the 

arguments. For simplicity, we rename the system calls that are in boldface in Fig. 10. For 

example, pthread_mutex_lock is renamed futex and pthread_mutex_unlock is renamed 

lock(m) or unlock(m) where m denotes mutual exclusion access to the critical area address. 

In addition, clone, which is called by pthread_create, is renamed create. Next, according to 

the algorithm presented in Section 3.2, we can obtain the process expression of the functions 

presented in Fig. 10.  

1

1 1 2

( ).

(1). || (2).

main

thread A thread

P init m P

P create P create P




 

1 ( ). (5). ( ). (1). (1).threadP lock m sleep unlock m exit join √ 

2 (1). ( ). . ( ). (2). (2).threadP sleep lock m writeunlock m exit join √ 

According to the method presented in Section 3.3, process 1P  of a main function can be 

rewritten to add concurrency operators to process expressions for mutual exclusion. 

( ). ( ).L lock m unlock m L  
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1 1 2(1). || (2). ||thread A thread AP create P create P L  

{ ( ), ( ), ( ), ( )}A lock m unlock m lock m unlock m  

lea    -0x8(%ebp),%eax

mov    %eax,(%esp)

call   0x8048450 <pthread_create@plt>

lea    -0xc(%ebp),%eax

mov    %eax,(%esp)

call   0x8048450 <pthread_create@plt>

 movl   $0x8049884,(%esp)

 call   0x8048440 <pthread_mutex_lock@plt>

mov    %eax,(%esp)

 call   0x80483e0 <pthread_join@plt>

mov    %eax,(%esp)

call   0x80483e0 <pthread_join@plt>

lea    -0x4(%ecx),%esp

ret  

sub    $0x32,%eax

mov    %eax,0x8049874

movl   $0x5,(%esp)

call   0x8048460 <sleep@plt>

leave

ret  

mov    0x8049878,%eax

add    $0x32,%eax

mov    %eax,0x8049878

movl   $0x8049884,(%esp) 

call   0x8048410 

<pthread_mutex_unlock@plt>

movl   $0x1,(%esp)

call   0x8048460 <sleep@plt>

movl   $0x8049884,(%esp)

call   0x8048440 <pthread_mutex_lock@plt>

add    %edx,%eax

mov    %eax,0x4(%esp)

movl   $0x8048750,(%esp)

call   0x8048420 <printf@plt>

movl   $0x8049884,(%esp)

call   0x8048410 

<pthread_mutex_unlock@plt>

leave

ret  

create(1)

movl   $0x8049884,(%esp)

call   0x8048430 

<pthread_mutex_init@plt>

create(2)

init(m)

lock(m)

lock(m)

unlock(m) unlock(m)

sleep(5)

sleep(1)

write

exit(1) exit(2)

join(1) join(2)

 
Fig. 10. Corresponding function CFG 

According to Law 7 presented in Section 3.4, the process expression mainP  satisfies the 

sequential relationship, as shown in Fig. 11. Detection processing is obtained by the behavior 

detection algorithm. Suppose that we capture the following call sequence at runtime:  

(init(m), create(1), create(2), lock(m), sleep(1), sleep(5), unlock(m), exit(1), lock(m), 

write, unlock(m), exit(2), join(1), join(2)) 

According to Laws 5, 8, and 9, and the process migration rule, the final sequence can 

migrate successfully to the termination process. This indicates that it is a normal sequence. 

Suppose we capture the following call sequence: 

(init(m), create(1), create(2), lock(m), sleep(1), sleep(5), lock(m), write, unlock(m), 

exit(2), unlock(m), exit(1), join(1), join(2)) 

If substituting the second lock(m) for the process expression mainP  causes downtime 0 , 
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then the sequence is an abnormal sequence and an alert will be issued. We can test and verify 

that the sequences acting against program timing cause downtime. 

Main Thread1 Thread2

init(m)

create(1)

create(2)

lock(m)

sleep(5)

unlock(m)

exit(1)

sleep(1)

lock(m)

write

unlock(m)

exit(2)

join(1)

join(2)

√

T T T
 

Fig. 11. Sequence diagram for C code  

5.2 Deadlock Analysis 

Fig. 12 illustrates a deadlock error caused by cyclic lock acquisition. This example spawns 

two threads, each of which attempt to acquire two locks A and B. However, the threads 

attempt to obtain the locks in different orders: thread 1 acquires lock A then lock B, while 

thread 2 acquires lock B then lock A. By following the behavior detection steps presented in 

Section 5.1, the following process expressions can be obtained. 

1 2|| ||thread A thread AP P P L  

1 1( ). 1. ( ). 2. ( ). ( ).thread threadP lock a systemcall lock b systemcall unlock b unlock a P  

2 2( ). 3. ( ). 4. ( ). ( ).thread threadP lock b systemcall lock a systemcall unlock a unlock b P  

 
Fig. 12. Deadlock example 

We can also obtain process expressions for the mutual exclusion lock and synchronous 

action set. 

|| ( ( ). ( ). ) || ( ( ). ( ). )a A b a A bL L L lock a unlock a L lock b unlock b L   

thread1 () { 

lock (a);  

systemcall1(); 

lock (b);  

systemcall2(); 

unlock (b);  

unlock (a);  

} 

thread2 () { 

lock (b);  

systemcall3(); 

lock (a);  

systemcall4(); 

unlock (a);  

unlock (b);  

} 
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{ ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )}A lock a lock b unlock a unlock b lock a lock b unlock a unlock b  
According to Laws 5 and 6, the following calculations can be performed.  

1

2

. 1. ( ). 2. ( ). ( ). ||

. 3. ( ). 4. ( ). ( ). ||

( ( ). ) || ( ( ). ) / ( ( ), ( ))

thread A

thread A

a A b

P systemcall lock b systemcall unlock b unlock a P

systemcall lock a systemcall unlock a unlock b P

unlock a L unlock b L lock a lock b







  

1

2

1. 3.( ( ). 2. ( ). ( ). ||

( ). 4. ( ). ( ). || ( ( ). ) || ( ( ). )

3. 1.( ( ).

thread A

thread A a A b

systemcall systemcall lock b systemcall unlock b unlock a P

lock a systemcall unlock a unlock b P unlock a L unlock b L

systemcall systemcall lock b systemc



 1

2

2. ( ). ( ). ||

( ). 4. ( ). ( ). || ( ( ). ) || ( ( ). )

0

thread A

thread A a A b

all unlock b unlock a P

lock a systemcall unlock a unlock b P unlock a L unlock b L



 

Thus, it can be seen that program deadlock errors can be detected by the proposed 

PADMP model. 

5.3 Efficiency Analysis 

Here, we evaluate a parallel composition that contains two processes. 

P=a.b.√||Ac.d.√ 

 =a.(b.√||Ac.d.√)+c.(a.b.√||Ad.√) 

=a.b.(√||Ac.d.√)+a.c.(b.√||Ad.√)+c.a.(b.√||Ad.√)+c.d.(a.b.√||A√) 

=a.b.c.d.√+a.c.b.(√||Ad.√)+a.c.d.(b.√||A√)+c.a.b.(√||Ad.√)+c.a.d.(b.√||A√)+c.d.a.b.√ 

=a.b.c.d.√+a.c.b.d.√+a.c.d.b.√+c.a.b.d.√+c.a.d.b.√+c.d.a.b.√ 

From the above formula, if a parallel composition contains two processes (n=2), then six 

behavior traces are obtained. With increasing n, the number of behavior traces increases by 

order of magnitude. Adopting a training method will result in a state space explosion, which 

leads to low space–time efficiency. However, in this paper, space consumption is the cost 

necessary to maintain n state list; the scale is equal to the number of actions, i.e., linear 

growth with n. The PADMP model uses a state set to express concurrent and 

nondeterministic options without a backtrack algorithm. If the length of a process expression 

is m and an n status list must be maintained, then, total time cost is O (mn). Thus, running 

time is linear; increasing m will not increase the operational cost significantly. 

Experimental environment: Linux rhel-server-5.4, Intel dual-core 1.73 GHz CPU, 2 GB 

RAM. Three test programs are listed in Table 1.  
Table 1. Test Programs 

Program Action num Concurrent-action num User thread 

Main 12 4 3 

Philosopher 72 48 5 

Reader-writer 266 34 n 

We construct PADMP models for the test programs and record space–time consumption. 

By modifying the source code, we simulate data race, deadlock, and synchronous 

abnormality scenarios that were caused by design errors or intrusion. We use the PADMP 

model to detect the scenarios and record the space–time consumption. All abnormalities are 

detected. The time consumption for modeling and detection is shown in Fig. 13, and the 

space consumption is shown in Fig. 14. 
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5.4 Experimental Design 

These test programs and our runtime monitor run on Linux OS (rhel-server-5.4) on Intel 

1.73Ghz cpu with 2GB of RAM. Behavior detection experiment program is made up of 

static analysis unit, modeling unit and detection unit. Static analysis unit is a tool program 

running in user-state, it reads the executable file and generates the corresponding process 

expressions files *.pe. According to laws presented in Section 3.4, modeling unit converts 

files *.pe to files *padmp using meta process expressions a , √, .a b , a b . File *.padmp 

stores chain table structures of the corresponding process expressions. Detection unit uses 

hook technology to intercept information, which is the entry address of system calls service 

function in the sys_call_table with real-time software running, monitors and obtains system 

call sequences. By putting system call sequences into the file *.padmp, detection unit detects 

and reports the result, as is shown in Fig. 15. 

Program

CFG

the binary code
 the system call 

sequence

a

P2

P3

P1

P4

b c

d
e

Process Expressions

0 0 0.( . || . )AP a b dP c eP
Law

match

detection unit 11 12

b
13 14

21 22 23
d

24
a

a

c

cP1

P2

a a b

a

b
b

a

result

*.padmp

*.pe

modeling unit

 

Fig. 13. Time Consumption 

Fig. 14. Space Consumption 
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Fig. 15. Architecture of the model 

 

We construct the models for some applications, such as apache, wu-ftpd, mysql and sqlite. 

Fig. 16 and Fig. 17 show the result of space and time overhead respectively. 
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5.4.1 Effectiveness of the PADMP Model 

As can be seen from experimental results, the time and space overheads of PADMP model 

are acceptable. During modeling the overheads are high, but the PADMP model can perform 

on real applications well during detection. 

5.4.2 Precision of the PADMP Model 

Precision is behavior detection capability of model. We choose FTP server wu-ftpd-2.6.0, 

which is widely used on the Linux platform as the test objects. Wu-ftpd-2.6.0 exists multiple 

vulnerabilities, we select some representative vulnerabilities, and use existing programs to 

attack, detection results are shown in Table. 2. 
Table 2. Typical vulnerabilities of wu-ftpd-2.6.0 and test results 

Vulnerability CVE Vulnerability type Test result 

CVE-2000-0573 Format string overflow √ 

CVE-2001-0550 Heap overflow √ 

CVE-2004-0185 Stack overflow √ 

CVE-2004-0148 Logic error × 

The experimental results show that the prototype system can detect attacks based on stack 

overflow, heap overflow and the format string overflow. The attack doesn't change the call 

sequence for CVE - 2004-2004 vulnerabilities, it is similar to the mimicry attack, not being 

detected. We can't test all types of attacks, but the results in Table. 2 partly prove the ability 

of intrusion detection system. 

Fig. 17. Result of time overhead 

Fig. 16. Result of space overhead 
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6. Conclusions 

In this paper, the problem of intrusion attempts on multithreaded programs is investigated. 

Based on process algebra, the PADMP model is presented to solve the concurrent behavior 

description and detection problem. Experimental results show that this method can 

accurately detect errors in multithreaded programs, such as data race, deadlock, and 

abnormal time sequence errors. Moreover, all test programs show an order of magnitude 

improvement in space–time complexity. However, the PADMP model doesn't consider the 

parameters of the system calls, so it can't effectively detect attacks based on data flow. We 

will solve this problem next step. 
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