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Abstract

The logic-based scheduling language RCPSV may be used to model resource-constrained project scheduling

problems with variants for minimizing the project completion time. A diagram-based, nonredundant enumeration

algorithm for the RCPSV-problem is proposed and the correctness of the algorithm is proved.
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1. Introduction

Scheduling problems are applied in several

industrial fields[1, 2]. Especially, resource constrained

project scheduling problems are applied for improving

effectiveness of project accomplishment[3, 4, 5]. Kim

and Schmidt-Schauss suggested a new approach for

representing and solving a general class of

non-preemptive resource-constrained project

scheduling problems in [6]. The new approach is to

represent scheduling problems with variant processes

as descriptions (activity terms) in a logic-based

terminological language called RSV (resource

constrained project scheduling with variant

processes). The basic ideas of the new approach

stem from the terminological methods of KL-ONE

based knowledge representation systems[7,8]. Further

this approach allows that the alternative processing

possibilities can be formulated not only for each

ground activity but also for each subproject.

A further logic-based scheduling language RCPSV

may be used to model resource-constrained project

scheduling problems with variants for minimizing the

project completion time. Based on the definition of

the language RCPSV, a calculus can be defined.

Using this calculus each expression of the language

RCPSV can be transformed into an semantically

equivalent normalized expression.

We propose a diagram-based, nonredundant

enumeration algorithm that can be applied to the

normalized expressions for solving the

RCPSV-problem. Further we prove the correctness

of the algorithm.

2. The Scheduling Language RCPSV

We define a term-based language RCPSV that

may be used to model resource-constrained project

scheduling problems with variants.

2.1 The syntax of the language

Definition 2.1 The vocabulary of RCPSV consists

of two disjoint sets of symbols. These sets are:

l A finite set of ground activities

  ⋯∈∈∈
where  is a finite set of resources. Each ground
activity is atomic and is associated with a

resource  and an activity time  needed for

completing it. Each resource can be assigned to

only one activity at a time (resource constraint).

Activity splitting is not allowed (nonpreemptive

case).

l A set of two structural symbols (operators) `xor'

and `hnet'.
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The activity-terms of RCPSV are given

inductively as follows:

1. Each ground activity is an activity-term.

2. If ⋯ are activity-terms, then all terms

(xor⋯)

and

hnet[let  ⋯  ⋯]

are activity-terms where ⋯ are distinct

constant symbols (names) and it holds ≠
and ∪⋯∪  ⋯
( ⋯). Further

⋯⋯ specifies a

directed acyclic graph.

The operators xor and hnet are used for

constructing activity-terms and have the following

meaning:

l xor: This operator can be used to select an

activity-term among several different alternative

activity-terms. Exactly one activity-term among

alternatives must be selected and executed.

l hnet: This operator specifies the arrangement of

activity-terms corresponding to the given precedence

relations (precedence constraint). In term hnet[let
  ⋯  ⋯], the operator

hnet forces [⋯] to specify the

precedence relation such that  is predecessor of

 for each   ⋯ for the set of vertices

∪⋯∪.

2.2 Reduced activity terms

An expression s of RCPSV is called a reduced
activity-term of an activity-term t of RCPSV, if s
can be derived from t by replacing each term of the

form (xor ⋯ ) in t by exactly one    ⋯or

so that s is xor-free. Associated with any

activity-term t of RCPSV, there exist finitely many
different reduced activity-terms which can be derived

from t. These reduced activity-terms take partially
different paths but complete the same project.

2.3 Schedules

If two ground activities require the same resource

at the same time, a resource conflict occurs. The

occurring resource conflicts have to be resolved. For

a reduced activity-term s let   ⋯ be the
set consisting of all ground activities occurring in s.
The activity-term s defines a strict partial order  
on ⋯, using the precedence relation. It is
generated on the set  of all subterms of s as
follows:

l hnet[let  ⋯  ⋯]∈

⇒   for all   ⋯.

l ∈∧  ⇒′  ′ for every subterm 
′

of   .

Definition 2.2 Let s be a reduced activity-term
and   ⋯. An active schedule for s is a
set of starting times of ground activities

∈ such that:
l The precedence constraints are satisfied:

  ≤  for each  and each immediate

predecessor  with    ,

l The resource constraints are satisfied:

 ≥  or  ≥  for all ∈
with   ≠ and

l No ground activity can be started earlier without

changing other start times: There does not exist

another set 
′ ∈ with a ground activity 

which satisfies the precedence and resource

constraints such that   
′ for ≠ and   

′ .

The makespan of an active schedule is the

duration from the first starting time min to the
stopping time max  .
Let  be an acyivity-term. Then the set of active

schedules for  is the union of the sets of active

schedules for all reduced activity subterms of .

Time is discrete. Accordingly, for any activity

term  the set of active schedules derived from  is

finite. In the following all schedules are assumed to

be active.

2.4 The Semantics of the language RCPSV

Now, the semantics of RCPSV can be defined as

follows:

Definition 2.3 The model-theoretic semantics of

activity-terms in RCPSV is given by an

interpretation  which consists of the set D (the

domain of ) and a function  (the interpretation

function of ). The set D consists of all active

schedules derived from activity-terms in RCPSV.

The interpretation function  assigns to every

activity-term  some subset of D that consists of all
active schedules derived from .

2.5 The Scheduling Problem RCPSV

The objective is minimizing the project makespan.

So, we define the scheduling problem RCPSV as

follows:

For a given activity-term of RCPSV an active

schedule which has the minimal project makespan

(project completion time) has to be determined.
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그림 1. 계산 법칙 (1), (2), (3)

Fig. 1. Rules (1), (2), (3)

3. A Calculus for the Scheduling

Language RCPSV

Similar to RSV [6], there are activity-terms which

are syntactically different, but semantically

equivalent. Based on the semantics of RCPSV, we

can define a calculus called RCPSV-calculus, which

transforms a term into another semantically

equivalent term of it.

Definition 3.1 If ⋯⋯⋯  are

activity-terms, the calculus has the associative rule

(1) and distributive rules (2, 3) (See Figure 1). The

associative rule (1) describes a subexpression

combined by `xor' which is an argument of the

operator `xor' may be flattened. The distributive

rules (2, 3) describe if a subexpression combined by

`xor' occurs as an argument of the operator `hnet',

the operator `xor' may be moved to the leftmost

position.

In rule 2 (3) the right (left) component  of

 () corresponds to an expression

combined by 'xor'. In the following we formalize the

correctness of the RCPSV-calculus.

Lemma 3.2 The RCPSV-calculus is a correct

calculus.

Proof. A rule in the form




is “correct” iff the interpretations of the upper

expression  and the lower expression  are

identical (  ). In the following we show this for

each of the 3 rules.

Rule (1): The sets of all active schedules derived

from the upper and lower expression are obviously

identical, because both expressions describe that

exactly one of the activity-terms

⋯⋯ ⋯  and  must be selected

and executed. Let () be the set of all

schedules derived from    . The interpretation of

the upper and lower expression corresponds then to

the union of the sets ⋯ ⋯  .

Therefore, the following equation holds:

(xor ⋯(xor⋯⋯  


= (xor ⋯⋯⋯  


Rule (2) : For the -st argument of the operator

`hnet' a choice possibility exists. One of the 

activity-terms ⋯ and  must be selected. For

each choice of    ⋯ a set of all schedules

derived from the expression

(hnet   ⋯ ⋯  

⋯⋯

denoted by  is determined. Then the set of all

schedules which may be derived from the upper

expression of the rule (2) corresponds to the union

of the sets ⋯   and  . Further this union

corresponds to the set of all schedules which may be

derived from the lower expression. So, the

interpretations of the upper expression and the lower

expression are identical.

Rule (3): This may be proved similar to rule (2).
□

The correctness of the RCPSV-calculus permits to

formalize the following theorem.

Theorem 3.3. For any activity description  of
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RCPSV all operators `xor' in the interior of 

always may be moved to the leftmost position, so

that  is transformed to a semantically equivalent,

normalized activity-term  in which the operator

`xor' can occur uniquely once in the leftmost

position combining all reduced activity-terms derived

from .

P roof. It is sufficient to show that for any

expression  of RCPSV all derivations terminate in a

normalized expression. This is the case when no

further RCPSV-rules can be applied (see figure 1).

Using an innermost strategy and induction on the

number of occurrences of `xor's it is easy to see

that in every expression containing the

`xor'-operator, it can be shifted to the topmost

position. Thus all `xor'-operators in the interior of

the activity-term  may be moved stepwise to the

left until at most one topmost 'xor' remains.

□

In theorem 3.3, it follows from semantical

equivalence of an activity-term  and its normalized

activity-term  that a schedule which is optimal for

 is optimal for  too and vice versa. But for a

normalized activity-term we can consider the

arguments (reduced activity-terms) of the

`xor'-operator separately in order to compute optimal

schedules. So, because of theorem 3.3 the

RCPSV-problem can be solved, while first

transforming each activity-term  into a semantically

equivalent, normalized activity-term  and then

computing the schedules with the minimal project

makespan for every reduced activity-term of 

separately using a solution algorithm for solving the

classical RCPS-problem. The schedules among all

these computed schedules that have the minimal

value correspond then to the optimal schedules of .

4. Solving the RCPSV-problem using

diagram-based algorithm

Many varieties of branch-and-bound-based implicit

enumeration methods for solving the RCPS-problem

which may be also used for determining the optimal

schedules for each reduced activity-term of RCPSV

have been reported[3,4,5,9]. Further Kim and

Schmidt-Schauss presented a new diagram-based

method for representing and solving reduced

activity-terms of RSV [6]. In this section we

describe an diagram-based algorithm for solving

reduced activity-terms of RCPSV which we call the

RCPSV-algorithm and it is similar to the method of

RSV[6].

A diagram has a time axis and a scan-line. In the

diagram each ground activity has a left and right

end point (a start and end time). The left and right

end point of any ground activity i denoted by LE 

and RE  are referred to as the stopping times of
the scan-line.  with ≥  denotes the scan-line
is found at the stopping time    in the diagram

. Instead of a continuous moving, the scan-line
jumps from a stopping time into the next right

stopping time while determining and then resolving

resource conflicts. For each given reduced

activity-term, a directed acyclic graph  with
 {   ⋯ ∈∈} and 
{∈⋯  can be determined. So, the

objective is to determine an optimal active schedule

  ⋯∈
subject to all constraints where  describes the

starting time of i.
In the following we will omit descriptions of the

parts equaling to the method of RSV and take the

notations and definitions which have been used for

the method of RSV if they can be consistently

applied to the algorithm.

In the beginning the scan-line is found at the time

  and the diagram is empty.

Step 1: Attaching start ground activities to the
scan-line: First, all start ground activities out of X
which have no predecessors are attached to the

scan-line. "Attaching a ground activity i to the
scan-line" means that i is placed in the diagram so
that the time at which the scan-line is found is

assigned to i as its start time.
Step 2: Moving the scan-line: The scan-line jumps
to the next stopping time.

Step 3: Determining and resolving resource conflicts
(Multiplying the diagram by the number of the
existing conflict combinations); Freezing all
definitely placed ground activities; Deleting all
definitely placed ground activities from the directed
graph: This step is carried out just as in .

Step 4: Attaching further ground activities to the
scan-line: Further ground activities out of X which
can be attached to the scan-line are determined in

order to place them. For an actual diagram 

and an actual  a ground activity in X can be
attached to the scan-line iff

1. i isn't from the diagram  ,

2. in  there exists no frozen activity j with

   for which LE    and

  hold.

3. all immediate predecessors e of i, that is, for e

and i ∈ holds, are already elements of
 and for all e  ≤  holds in

 .

Furthermore the steps 2, 3, 4 are recursively applied

until all ground activities have been placed in the
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diagram, all activities in the diagram have been

frozen and the actual graph is empty so that a

schedule is completed. Among all computed

schedules, those that have the minimal project

makespan, are delivered as the optimal schedules for

the given reduced activity term.

그림 2. 그래프

Fig. 2. A graph

Example 4.1. We consider the following reduced

activity term.

hnet[let      ⋯ 



There are start activities  and  (See Figure 2).

The diagram  of figure 3 shows the resulting
diagram after applying the step 1, in which the

scan-line time 0 has been assigned to these start

activities  and  as their start time. In the next

step 2, the scan-line jumps into the next stopping

time  . There is one -time conflict free

activity 2. In addition, an -time resource conflict

occurs since there is an activity  such that

   (e.g. the activity ) and the resource

 is required by more than one activity in the

time interval  . So there exist two -time

conflict combinations  and . The diagram 

is duplicated, let these be   and ,  are

assigned to   respectively. In each diagram, the

-time conflict free activity  and the assigned 

-time conflict activity are frozen and the other 

-time conflict activity is moved behind the frozen

conflict activity. Subsequently we proceed with the

next step 4 in each diagram. If we pursue  to
which the combination  is assigned, we have the

diagram  of figure 3 where  and  have
been frozen and  has been moved behind . We

delete all definitely placed ground activities (all

frozen ground activities) from the graph. In the next

step 4, further ground activities out of the graph

which can be attached to the scan-line of 

should be determined. The activities  and  can not

be attached since it holds     for their

immediate predecessor . The activity  can not be

attached too since in  , there exists a frozen

activity  with      for which

    holds. The resource  is being

blocked until the time  . So there is no activity to

be attached to the scan-line. We proceed with the

next step 2. After moving the scan-line in  ,
we have diagram  . Since in  no -time
resource conflict occurs and no -time conflict free

activity exists, we proceed with the next step 4 in

which the activities   and  can be attached to

the scan-line. After placing these activities, the

scan-line jumps to the next stopping time  .

The diagram  of figure 3 shows the resulting
diagram. Now, there are two 3-time conflict

resources  and . So there exist four -time

conflict combinations  and 

altogether. The diagram  is multiplied  times,
let these be ⋯ and ,  are
assigned to ⋯ respectively. If we pursue
the diagram , and apply the further steps

recursively, one active schedule is finally generated

that the diagram  of figure 3 shows. In this
way, 8 nonredundant active schedules are computed

altogether. Two of these require the minimal project

makespan .

4. Proving correctness of the

RCPSV-algorithm

A correctness proof for the RCPSV-algorithm is

given as follows:

Theorem 4.1 For any given reduced activity-term s,
the RCPSV-algorithm generates nonredundantly all

active schedules which may be derived from s.
Proof. We show the theorem through induction on

the number of ground activities (vertices of the

corresponding graph).

Induction base: If s is a ground activity, the proof
is trivial.

Induction step: In the beginning the scan-line is
found at the time  . After applying the first

step all start activities of s are attached to the
scan-line. In the following the scan-line jumps to

the next stopping time l. Let ⋯ be all l-time

direct scan-line activities, i.e. it holds that

  ⋯   . Now, the following

2 different cases have to be distinguished:

Case 1: There is at least one activity  which

corresponds to a -time conflict-free activity. First,

all -time conflict-free activities are frozen and then

the occurring resource conflicts are resolved. Here,

let the diagram be multiplied to k diagrams ⋯
so that each -time conflict combination is assigned

to a diagram respectively. After resolving the
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그림 3. RCPSV-다이아그램을 기초로한 계산

Fig. 3. A RCPSV-diagram based calculation

resource conflicts, for every diagram all -time direct

scan-line ground activities are deleted from the

graph respectively. So, in every diagram the size

(the number of ground activities) of the

corresponding actual graph becomes smaller since at

least one -time conflict-free activity  is deleted.

Furthermore, the RCPSV-algorithm is applied

recursively to every diagram accompanied by the

corresponding actual graph. By assumption of

induction, the RCPSV-algorithm generates

nonredundantly all active schedules for every

diagram since the size of every corresponding actual

graph is smaller than the size of the graph of s.
Moreover,  generates nonredundantly all active

schedules for s since ⋯  are pairwise different.

It is obviously true for the case   , i.e. all

⋯ are l-time conflict-free too.

Case 2: Each activity  is involved in a -time

resource conflict, i.e. there is no -time conflict-free

activity. First the occurring resource conflicts are

resolved. Let the diagram be multiplied to k
diagrams ⋯  so that each -time conflict

combination is assigned to a diagram respectively.

For any  the following two subcases have to be

distinguished:

Case 2.1: There is at least one l-time direct

scan-line activity  which is frozen. This case is

very similar to the case 1 and can be shown

correspondingly that from  the RCPSV-algorithm

generates nonredundantly all active schedules.

Case 2.2: None of the -time direct scan-line

activities ⋯ is frozen. Then, there are further 

-time conflict activities which are frozen. Let these

be ⋯  where    for each . Eventually

⋯  will be deleted from the graph and in the

result the size of the graph will become smaller. So,

by assumption of induction, the RCPSV-algorithm

generates nonredundantly all active schedules.

Consequently, for the case 2, the RCPSV-algorithm

generates nonredundantly all active schedule for 

since ⋯  are pairwise different.

5. Conclusion

Another terminological scheduling language

RCPSV, similar to RSV, may be used to formulate

and solve a new general class of RCPSV-problems.

The terminological logic RCPSV offers an effective

approach for solving the RCPSV-problem. We

introduced a solution algorithm based on a scan-line

principle, through which all active schedules could be

generated for any reduced activity term. The

correctness proof of the solution algorithm shows the

algorithm generates nonredundantly all active

schedules which may be derived from any given
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reduced activity-term.
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