초록
본 연구에서는 ASM기반 $(2D)^2$ 하이브리드 전처리 알고리즘을 이용한 얼굴인식 분류기와 그것의 설계방법론을 소개한다. 얼굴인식을 위한 이미지는 외부 환경에 쉽게 영향을 받기 때문에, 전처리 단계로 이러한 문제를 해결하기 위해서 ASM을 사용하였다. 특히 사람 얼굴의 특징 추출을 목적으로 널리 이용되고 있다. ASM을 이용해 얼굴영역을 추출 한 뒤 PCA와 LDA를 이용한 $(2D)^2$ 하이브리드 전처리 알고리즘을 이용하여 차원을 축소한다. 전처리 알고리즘을 통한 얼굴데이터는 제안된 다항식 기반 방사형 기저함수 신경회로망의 입력으로 사용된다. 기존의 신경회로망과는 달리 제안된 지능형 패턴 분류기는 강인한 네트워크 특성을 가지며, 예측능력이 우수할 뿐만 아니라 다차원 입출력에 대한 문제도 해결했다. 분류기의 중요한 필수 설계 파라미터(행의 고유벡터의 수, 열의 고유벡터의 수, 클러스터의 수, 퍼지화 계수)는 ABC알고리즘에 의해 최적화 되어진다. 얼굴인식에 많이 사용되는 Yale과 AT&T를 사용하여 인식률을 평가하였다.
In this study, we introduce ASM-based face recognition classifier and its design methodology with the aid of 2-dimensional 2-directional hybird preprocessing algorithm. Since the image of face recognition is easily affected by external environments, ASM(active shape model) as image preprocessing algorithm is used to resolve such problem. In particular, ASM is used widely for the purpose of feature extraction for human face. After extracting face image area by using ASM, the dimensionality of the extracted face image data is reduced by using $(2D)^2$hybrid preprocessing algorithm based on LDA and PCA. Face image data through preprocessing algorithm is used as input data for the design of the proposed polynomials based radial basis function neural network. Unlike as the case in existing neural networks, the proposed pattern classifier has the characteristics of a robust neural network and it is also superior from the view point of predictive ability as well as ability to resolve the problem of multi-dimensionality. The essential design parameters (the number of row eigenvectors, column eigenvectors, and clusters, and fuzzification coefficient) of the classifier are optimized by means of ABC(artificial bee colony) algorithm. The performance of the proposed classifier is quantified through yale and AT&T dataset widely used in the face recognition.