DOI QR코드

DOI QR Code

Distribution and Origin of Quaternary Mass Transport Deposit in the Ulleung Basin, East Sea

동해 울릉분지 제 4기 질량류 퇴적체 분포 및 기원

  • Yi, Young-Mi (Department of Petroleum Resources Technology, Korea University of Science and Technology (UST)) ;
  • Yoo, Dong-Geun (Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Kang, Nyeon-Keon (Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Yi, Bo-Yeon (Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 이영미 (과학기술연합대학원대학교 석유자원공학과) ;
  • 유동근 (한국지질자원연구원 석유해저연구본부) ;
  • 강년건 (한국지질자원연구원 석유해저연구본부) ;
  • 이보연 (한국지질자원연구원 석유해저연구본부)
  • Received : 2014.04.24
  • Accepted : 2014.05.08
  • Published : 2014.05.31

Abstract

Analysis of multi-channel seismic reflection profiles collected from the Ulleung Basin reveals that the Quaternary sequence consists of four stratigraphic units separated by erosional unconformities. Individual stratigraphic unit includes eighteen mass transport deposits which are variable in geometric characteristics and spatial distribution. Each mass transport deposit on the seismic profile is acoustically characterized by chaotic or transparent seismic facies, and shows wedge or lens-shaped external geometry. The mass transport deposits, which comprise a succession of stacked wedges, mainly occur on the southern slope, and their thickness gradually decreases toward the basin plain. The time structure map of erosional unconformities shows that a tectonic-induced structural high and troughs toward the northwest and northeast are developed at the central part of the basin. Based on the isochron map, the mass transport deposits, originated from southern part of the study area, transported to the basin plain and can be divided into two groups by the structural high. Consequently, the mass transport deposits within the Quaternary sequence in the Ulleung Basin are largely controlled by the large amounts of sediment supply, dissociation of gas hydrate during the lowstands, and central structural high.

동해 울릉분지에서 취득된 2차원 다중채널 탄성파 탐사자료의 해석에 의하면, 연구지역에 분포하는 제 4기 퇴적층은 침식부정합면에 의해 4개의 층서단위로 구분된다. 각 층서단위는 서로 다른 특징을 갖는 18개의 질량류 퇴적체로 구성된다. 탄성파 단면상에서 질량류 퇴적체는 캐오틱 혹은 투명한 음향상 특징을 보이며, 쐐기 혹은 렌즈상의 외부형태를 가진다. 질량류 퇴적체는 주로 울릉분지 남쪽사면 일대에 중첩되어 분포하며, 분지중앙으로 향하면서 층후가 얇아지는 경향을 보인다. 시간구조도에 의하면 연구지역의 중앙에는 주변보다 융기된 지형과 북서 및 북동방향의 저지대가 발달한다. 등시층후도에 의하면 연구지역의 남쪽으로부터 기원한 질량류 퇴적체는 사면을 따라 분지중앙으로 유입되었으며, 지구조운동으로 형성된 융기지형에 의해 두 방향으로 분리되어 발달하였다. 결과적으로 울릉분지에 분포하는 제 4기 질량류 퇴적체의 발달은 다량의 퇴적물 공급, 저해수면시기 동안의 가스하이드레이트 해리, 중앙부에 위치한 융기지형 등의 요인에 의해 크게 조절되었다.

Keywords

Acknowledgement

Grant : 가스하이드레이트 부존평가 및 저류층 특성 연구

Supported by : 한국지질자원연구원

References

  1. Bryn, P., Berg, K., Forsberg, C. F., Solheim, A., and Kvalstad, T. J., 2005, Explaining the Storegga Slide, Marine and Petroleum Geology, 22, 11-19. https://doi.org/10.1016/j.marpetgeo.2004.12.003
  2. Bugge, T., Befring, S., Belderson, R. H., Eidvin, T., Jansen, E., Kenyon, N. H., Holtedahl, H., and Sejrup, H. P., 1987, A giant three-stage submarine slide off Norway, Geo-Marine Letters, 7, 191-198. https://doi.org/10.1007/BF02242771
  3. Carpenter, G., 1981, Coincident sediment slump/clathrate complexes on the U.S. Atlantic continental slope, Geo-Marine Letters, 1, 29-32. https://doi.org/10.1007/BF02463298
  4. Chough, S. K., and Barg, E., 1987, Tectonic history of Ulleung Basin margin, East Sea (Sea of Japan), Geology, 15, 45-48. https://doi.org/10.1130/0091-7613(1987)15<45:THOUBM>2.0.CO;2
  5. Chough, S. K., Jeong, K. S., and Honza, E., 1985, Zoned facies of mass-flow deposits in the Ulleung (Tsushima) Basin, East Sea (Sea of Japan), Marine Geology, 65, 113-125. https://doi.org/10.1016/0025-3227(85)90049-0
  6. Chough, S. K., Lee, H. J., and Yoon, S. H., 2000, Marine Geology of Korean Seas, 2nd Ed., Elsevier.
  7. Chough, S. K., and Lee, K. E., 1992, Multi-stage volcanism in the Ulleung Back-arc Basin, East Sea (Sea of Japan), The Island Arc, 1, 32-39. https://doi.org/10.1111/j.1440-1738.1992.tb00055.x
  8. Chough, S. K., Lee, S. H., Kim, J. W., Park, S. C., Yoo, D. G., Han, H. S., Yoon, S. H., Oh, S. B., Kim, Y. B., and Back, G. G., 1997, Chirp (2 - 7 kHz) echo characters in the Ulleung Basin, Geoscience Journal, 1(3), 143-153. https://doi.org/10.1007/BF02910206
  9. Diaz, J., Weimer, P., Bouroullec, R., and Dorn, G., 2011, 3-D seismic stratigraphic interpretation of Quaternary mass-transport deposits in the Mensa and Thunder Horse intraslope basins, Mississippi canyon, northern deep Gulf of Mexico, U.S.A., in Shipp, R. C., Weimer, P., and Posamentier, H. W., Ed., Mass-Transport Deposits in Deepwater Settings, SEPM Special Publication, 96, 127-149.
  10. Frey-Martinez, J., Cartwright, J., and Hall, B., 2005, 3D seismic interpretation of slump complexes: examples from the continental margin of Israel, Basin Research, 17, 83-108. https://doi.org/10.1111/j.1365-2117.2005.00255.x
  11. Gee, M. J. R., Masson, D. G., Watts, A. B., and Mitchell, N. C., 2001, Passage of debris flows and turbidity currents through a topographic constriction: seafloor erosion and deflection of flow pathways, Sedimentology, 48, 1389-1409.
  12. Gee, M. J. R., Uy, H. S., Warren, J., Morley, C. K., and Lambiase, J. J., 2007, The Brunei slide: A giant submarine landslide on the North West Borneo Margin revealed by 3D seismic data, Marine Geology, 246, 9-23. https://doi.org/10.1016/j.margeo.2007.07.009
  13. Hampton, M. A., and Lee, H. J., 1996, Submarine landslides, Reviews of Geophysics, 34(1), 33-59. https://doi.org/10.1029/95RG03287
  14. Haq, B. U., 1998, Gas hydrates: greenhouse nightmare? Energy panacea of pipe dream? GSA TODAY, 8(11), 1-6.
  15. Jenner, K. A., Piper, D. J. W., Campbell, D. C., and Mosher, D. C., 2007, Lithofacies and origin of late Quaternary mass transport deposits in submarine canyons, central Scotian Slope, Canada, Sedimentology, 54, 19-38. https://doi.org/10.1111/j.1365-3091.2006.00819.x
  16. Joh, M. H., and Yoo, D. G., 2009, Plio-Quaternary seismic stratigraphy and depositional history on the southern Ulleung Basin, East Sea, Journal of the Korean Society of Oceanography, 14(2), 90-101.
  17. Kang, D. H., Yoo, D. G., Bahk, J. J., Ryu, B. J., Koo, N. H., Kim, W. S., Park, K. S., Park, K. P., and Kim, J. S., 2009, The occurrence patterns of gas hydrate in the Ulleung Basin, East Sea, Journal of the Geological Society of Korea, 45(2), 143-155.
  18. Korea Institute of Geoscience and Mineral Resources (KIGAM), 2005, Studies on Gas Hydrates Development Technology, GAD2000011-2005(6), 552pp.
  19. Korea Institute of Geoscience and Mineral Resources (KIGAM), 2008, Analysis of Gas Hydrate Deep-drill Cores and Studies on Gas Hydrate Stability and Geohazards, NP2008-003-2008(1), 240pp.
  20. Kim, G. Y., Kim, D. C., Park, S. C., and Lee, G. H., 1999, Chirp (2 - 7 kHz) echo characters and geotechnical properties of surface sediments in the Ulleung Basin, the East Sea, Geosciences Journal, 3(4), 213-224. https://doi.org/10.1007/BF02910492
  21. Kvalstad, T. J., Andresen, L., Forsberg, C. F., Berg, K., Bryn, P., and Wangen, M., 2005, The Storegga slide: evaluation of triggering sources and slide mechanics, Marine and Petroleum Geology, 22, 245-256. https://doi.org/10.1016/j.marpetgeo.2004.10.019
  22. Lebreiro, S. M., McCave, I. N., and Weaver, P. P. E., 1997, Late Quaternary turbidite emplacement on the Horseshoe abyssal plain (Iberian margin), Journal of Sedimentary Research, 67(5), 856-870.
  23. Lee, G. H., and Suk, B. C., 1998, Latest Neogene-Quaternary seismic stratigraphy of the Ulleung Basin, East Sea (Sea of Japan), Marine Geology, 146, 205-224. https://doi.org/10.1016/S0025-3227(97)00123-0
  24. Lee, G. H., Kim, H. J., Han, S. J., and Kim, D. C., 2001, Seismic stratigraphy of the deep Ulleung Basin in the East Sea (Japan Sea) back-arc basin, Marine and Petroleum Geology, 18, 615-634. https://doi.org/10.1016/S0264-8172(01)00016-2
  25. Lee, H. J., 2009, Timing of occurrence of large submarine landslides on the Atlantic Ocean margin, Marine Geology, 264, 53-64. https://doi.org/10.1016/j.margeo.2008.09.009
  26. Lee, H. J., Chough, S. K., and Yoon, S. H., 1996, Slope-stability change from late Pleistocene to Holocene in the Ulleung Basin, East Sea (Japan Sea), Sedimentary Geology, 104, 39-51. https://doi.org/10.1016/0037-0738(95)00119-0
  27. Lee, S. H., Bahk, J. J., and Chough, S. K., 2003, Origin of deep-water sediment waves in the Ulleung Interplain Gap, East Sea, Geosciences Journal, 7(1), 65-71. https://doi.org/10.1007/BF02910266
  28. Lee, S. H., Bahk, J. J., and Chough, S. K., 2004, Late Quaternary sedimentation in the eastern continental margin of the Korean Peninsula, in Clift, P., Kuhnt, W., Wang, P., and Hayes, D., Ed., Continent-Ocean Interactions Within East Asian Marginal Seas, AGU Geophysical Monograph Series, 149, 205-233.
  29. Lee, S. H., Bahk, J. J., Kim, H. J., Kim, G. Y., Kim, S. P., Jeong, S. W., and Park, S. S., 2014, Contrasting development of the latest Quaternary slope failures and mass-transport deposits in the Ulleung Basin, East Sea (Japan Sea), in Krastel, S., Behrmann, J. H., Volker, D., Stipp, M., Berndt, C., Urgeles, R., Chaytor, J., Huhn, K., Strasser, M., and Harbitz, C. B., Ed., Submarine Mass Movements and Their Consequences - 6th International Symposium, Springer, 37, 403-412.
  30. Lee, S. H., Bahk, J. J., Kim, H. J., Lee, K. E., Jou, H. T., and Suk, B. C., 2010, Changes in the frequency, scale, and failing areas of latest Quaternary (< 29.4 cal. ka B.P.) slope failures along the SW Ulleung Basin, East Sea (Japan Sea), inferred from depositional characters of densely dated turbidite successions, Geo-Marine Letters, 30, 133-142. https://doi.org/10.1007/s00367-009-0168-0
  31. Lee, S. H., Chough, S. K., Back, G. G., Kim, Y. B., and Sung, B. S., 1999, Gradual downslope change in high-resolution acoustic characters and geometry of large-scale submarine debris lobes in Ulleung Basin, East Sea (Sea of Japan), Korea, Geo-Marine Letters, 19, 254-261. https://doi.org/10.1007/s003670050116
  32. Locat, J., and Lee, H. J., 2002, Submarine landslides: advances and challenges, Canadian Geotechnical Journal, 39, 193-212. https://doi.org/10.1139/t01-089
  33. Masson, D. G., Harbitz, C. B., Wynn, R. B., Pedersen, G., and Lovholt, F., 2006, Submarine landslides: processes, triggers and hazard prediction, Philosophical Transactions of the Royal Society A, 364, 2009-2039. https://doi.org/10.1098/rsta.2006.1810
  34. McAdoo, B. G., Pratson, L. F., and Orange, D. L., 2000, Submarine landslide geomorphology, US continental slope, Marine Geology, 169, 103-136. https://doi.org/10.1016/S0025-3227(00)00050-5
  35. Mitchum, R. M., Jr., Vail, P. R., and Thompson, S., III, 1977, Seismic stratigraphy and global changes of sea level, part 2: The depositional sequence as a basic unit for stratigraphy analysis, in Payton, C. E., Ed., Seismic Stratigraphy-Applications to Hydrocarbon Exploration, AAPG Memoir, 26, 53-62.
  36. Moscardelli, L., and Wood, L., 2008, New classification system for mass transport complexes in offshore Trinidad, Basin Research, 20, 73-98. https://doi.org/10.1111/j.1365-2117.2007.00340.x
  37. Moscardelli, L., Wood, L., and Mann, P., 2006, Mass-transport complexes and associated processes in the offshore area of Trinidad and Venezuela, AAPG Bulletin, 90(7), 1059-1088. https://doi.org/10.1306/02210605052
  38. Mosher, D. C., and Campbell, D. C., 2011, The Barrington submarine mass-transport deposit, western Scotian slope, Canada, in Shipp, R. C., Weimer, P., and Posamentier, H. W., Ed., Mass-Transport Deposits in Deepwater Settings, SEPM Special Publication, 96, 151-159.
  39. Nelson, C. H., Escutia, C., Damuth, J. E., and Twichell, D. C., 2011, Interplay of mass-transport and turbidite-system deposits in different active tectonic and passive continental margin settings: external and local controlling factors, in Shipp, R. C., Weimer, P., and Posamentier, H. W., Ed., Mass-Transport Deposits in Deepwater Settings, SEPM Special Publication, 96, 39-66.
  40. Paull, C. K., Buelow, W. J., Ussler, W., III, and Borowski, W. S., 1996, Increased continental-margin slumping frequency during sea-level lowstands above gas hydrate-bearing sediments, Geology, 24(2), 143-146. https://doi.org/10.1130/0091-7613(1996)024<0143:ICMSFD>2.3.CO;2
  41. Paull, C. K., and Ussler, W., III, 1991, Is the extent of glaciation limited by marine gas-hydrates? Geophysical Research Letters, 18(3), 432-434. https://doi.org/10.1029/91GL00351
  42. Piper, D. J. W., Mosher, D. C., Gauley, B. J., Jenner, K., and Campbell, D. C., 2003, The chronology and recurrence of submarine mass movements on the continental slope off southeastern Canada, in Locat, J., and Mienert, J., Ed., Submarine Mass Movements and Their Consequences, 1st Ed., Kluwer Academic Publishers, 299-306.
  43. Posamentier, H. W., and Kolla, V., 2003, Seismic geomorphology and stratigraphy of depositional elements in deep-water settings, Journal of Sedimentary Research, 73(3), 367-388. https://doi.org/10.1306/111302730367
  44. Posamentier, H. W., and Martinsen, O. J., 2011, The character and genesis of submarine mass-transport deposits: insights from outcrop and 3D seismic data, in Shipp, R. C., Weimer, P., and Posamentier, H. W., Ed., Mass-Transport Deposits in Deepwater Settings, SEPM Special Publication, 96, 7-38.
  45. Prior, D. B., Doyle, E. H., and Neurauter, T., 1986, The Currituck Slide, mid-Atlantic continental slope-revisited, Marine Geology, 73, 25-45. https://doi.org/10.1016/0025-3227(86)90109-X
  46. Rao, Y. H., Subrahmanyam, C., Subrahmanyam, C., Rastogi, A., and Deka, B., 2002, Slope failures along the western continental margin of India: a consequence of gas-hydrate dissociation, rapid sedimentation rate, and seismic activity? Geo-Marine Letters, 22, 162-169. https://doi.org/10.1007/s00367-002-0107-9
  47. Sawyer, D. E., Flemings, P. B., Dugan, B., and Germaine, J. T., 2009, Retrogressive failures recorded in mass transport deposits in the Ursa Basin, Northern Gulf of Mexico, Journal of Geophysical Research, 114, doi: 10.1029/2008JB006159.
  48. Scholz, N. A., Riedel, M., Bahk, J. J., Yoo, D. G., and Ryu, B. J., 2012, Mass transport deposits and gas hydrate occurrences in the Ulleung Basin, East Sea, Part 1: Mapping sedimentation patterns using seismic coherency, Marine and Petroleum Geology, 35, 91-104. https://doi.org/10.1016/j.marpetgeo.2012.03.004
  49. Twichell, D. C., Chaytor, J. D., ten Brink, U. S., and Buczkowski, B., 2009, Morphology of late Quaternary submarine landslides along the U.S. Atlantic continental margin, Marine Geology, 264, 4-15. https://doi.org/10.1016/j.margeo.2009.01.009
  50. Watanabe, Y., Nakai, S., Hiruta, A., Matsumoto, R., and Yoshida, K., 2008, U-Th dating of carbonate nodules from methane seeps off Joetsu, Eastern Margin of Japan Sea, Earth and Planetary Science Letters, 272, 89-96. https://doi.org/10.1016/j.epsl.2008.04.012
  51. Yi, S. H., Bahk, J. J., Jia, H., and Yoo, D. G., 2012, Pliocene-Pleistocene boundary determination in hemipelagic sediment from the Ulleung Basin (East Sea, offshore Korea) inferred from terrigenous and marine palynofloras, Review of Palaeobotany and Palynology, 181, 54-63. https://doi.org/10.1016/j.revpalbo.2012.05.002
  52. Yoo, D. G., Kang, D. H., Koo, N. H., Kim, W. S., Kim, G. Y., Kim, B. Y., Chung, S. H., Kim, Y. J., Lee, H. Y., Park, K. P., Lee, G. H., and Park, S. C., 2008, Geophysical evidence for the occurrence of gas hydrate in the Ulleung Basin, East Sea, Journal of the Geological Society of Korea. 44(5), 645-655.
  53. Yoo, D. G., Kang, N. K., Yi, B. Y., Kim, G. Y., Ryu, B. J., Lee, K. S., Lee, G. H., and Riedel, M., 2013, Occurrence and seismic characteristics of gas hydrate in the Ulleung Basin, East Sea, Marine and Petroleum Geology, 47, 236-247. https://doi.org/10.1016/j.marpetgeo.2013.07.001
  54. Yoon, S. H., and Chough, S. K., 1995, Regional strike slip in the eastern continental margin of Korea and its tectonic implications for the evolution of Ulleung Basin, East Sea (Sea of Japan), GSA Bulletin, 107(1), 83-97. https://doi.org/10.1130/0016-7606(1995)107<0083:RSSITE>2.3.CO;2
  55. Yoon, S. H., Park, S. J., and Chough, S. K., 2002, Evolution of sedimentary basin in the southwestern Ulleung Basin margin: Sequence stratigraphy and geologic structures, Geosciences Journal, 6(2), 149-159. https://doi.org/10.1007/BF03028286