DOI QR코드

DOI QR Code

Tradeoff Analysis of Consensus Algorithm in Distributed Wireless Networks

분산 무선 네트워크에서 컨센서스 알고리즘의 트레이드오프 분석

  • Choi, Hyun-Ho (Department of Electrical, Electronic and Control Engineering, Institute for Information Technology Convergence, Hankyong National University)
  • Received : 2014.04.01
  • Accepted : 2014.04.29
  • Published : 2014.05.31

Abstract

In this paper, we analyze the tradeoff performance of a consensus algorithm when it is applied to the CSMA/CA-based distributed wireless network. The consensus algorithm has a faster convergence speed as the number of cooperating neighbors increases, but the transmission delay on the wireless network increases due to access collisions as the number of cooperating neighbors increases. Therefore, there exists a tradeoff relationship between these two performances and so there exists an optimal number of cooperating neighbors that minimizes the consensus time. The result for the optimal number of neighbors according to the number of nodes that participate in the consensus shows that it is optimal for all nodes to cooperate together in the small-scale network but it is optimal to limit the number of neighbors to a fixed value in the large-scale network with nodes greater than a certain value.

본 논문에서는 CSMA/CA기반의 분산 무선 네트워크에 컨센서스 알고리즘을 적용할 때 발생하는 트레이드오프 성능을 분석한다. 컨센서스 알고리즘 자체는 협력 이웃 노드가 많을수록 빠른 수렴 속도를 갖지만, 무선 네트워크상에서는 협력 이웃 노드가 많을수록 접속 충돌로 인하여 전송 지연이 증가한다. 따라서 두 성능 간에 트레이드오프가 존재하며, 이로 인하여 컨센서스 달성 시간을 최소화하는 최적의 협력 이웃 노드 수가 존재한다. 시뮬레이션을 통하여 컨센서스 참여 노드 수에 따라 최적 이웃 노드 수를 도출한 결과, 네트워크 규모가 작을 때에는 모든 노드가 다 같이 협력하는 것이 최적이지만 네트워크 규모가 어느 이상으로 커질 경우에는 이웃 노드 수를 일정 값으로 제한하는 것이 최적 운용 전략이 된다.

Keywords

References

  1. R. Olfati-Saber, J. Fax, and R. Murray, "Consensus and Cooperation in Networked Multi-Agent Systems," Proceedings of the IEEE, vol. 95, no. 1, pp. 215-233, Jan. 2007. https://doi.org/10.1109/JPROC.2006.887293
  2. Y.-W. Hong and A. Scaglione, "A Scalable Synchronization Protocol for Large Scale Sensor Networks and Its Applications," IEEE Journal on Selected Areas in Communications, vol. 23, no. 5, pp. 1085-1099, May 2005. https://doi.org/10.1109/JSAC.2005.845418
  3. H.-J. Yoo, M.-N. Lee, and Y.-S. Cho, "A Distributed Frequency Synchronization Technique for OFDMA-Based Mesh Networks Using Bio-Inspired Algorithm," J. Korean Inst. Commun. Inform. Soc. (KICS), vol.37B, no. 11, pp 1022-1032, Nov. 2012. https://doi.org/10.7840/kics.2012.37B.11.1022
  4. R. Pagliari, Y. P. Hong, and A. Scaglione, "Bio-inspired Algorithms for Decentralized Round-Robin and Proportional Fair Scheduling," IEEE Journal on Selected Areas in Communications, vol. 28, no. 4, pp. 564-575, May 2010. https://doi.org/10.1109/JSAC.2010.100506
  5. R. Olfati-Saber, "Ultrafast Consensus in Small-World Networks," in Proceeding of American Control Conference, pp. 2371-2378, Jun. 2005.
  6. R. Olfati-Saber and J. S. Shamma, "Consensus Filters for Sensor Networks and Distributed Sensor Fusion," in Proceeding of IEEE Conf. Decision and Control and Eur. Control Conf. (CDC-ECC '05), pp. 6698-6703, Dec. 2005.
  7. H.-H. Choi, "Performance Evaluation of Biologically Inspired Consensus Algorithm in Distributed Wireless Networks," KICS Joint Conference on Communications and Information (JCCI), pp. 1-2, Apr. 2014.
  8. R. O. Saber and R. M. Murray, "Consensus protocols for networks of dynamic agents," in Proceeding of American Control Conference, pp. 951-956, 2003.
  9. R. Olfati-Saber and R. M. Murray, "Consensus problems in networks of agents with switching topology and time-delays," IEEE Trans. Autom. Control, vol. 49, no. 9, pp. 1520-1533, Sep. 2004. https://doi.org/10.1109/TAC.2004.834113
  10. H.-H. Choi, J.-M. Moon, I.-H. Lee, and H. Lee "Carrier Sense Multiple Access with Collision Resolution," IEEE Communications Letters, vol. 17, no. 6, pp. 1284-1287, June 2013. https://doi.org/10.1109/LCOMM.2013.020413.122318
  11. R. MacKenzie, T. O'Farrell, "Throughput and Delay Analysis for p-Persistent CSMA with Heterogeneous Traffic," IEEE Trans. Commun., vol. 58, pp. 2881-2891, Oct. 2010. https://doi.org/10.1109/TCOMM.2010.082710.090523
  12. IEEE Std 802.11-2007: Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE, 2007.
  13. H.-H. Choi and J.-R. Lee, "Distributed Transmit Power Control for Maximizing End-to-End Throughput in Wireless Multi-hop Networks," Springer Wireless Personal Communications, vol. 74, no. 3, pp. 1033-1044, Feb. 2014. https://doi.org/10.1007/s11277-013-1342-2