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Abstract
In this work, nanocomposites of epoxy resin and chemically reduced graphene oxide (RGO) 
were prepared by thermal curing process. X-ray diffractions confirmed the microstructural 
properties of RGO. Differential scanning calorimetry was used to evaluate the curing beha-
viors of RGO/epoxy nanocomposites with different RGO loading amounts. We investigated 
the effect of RGO loading amounts on the mechanical properties of the epoxy nanocomposi-
tes. It was found that the presence of RGO improved both flexural strength and modulus of 
the epoxy nanocomposites till the RGO loading reached 0.4 wt%, and then decreased. The 
optimum loading achieved about 24.5 and 25.7% improvements, respectively, compared 
to the neat-epoxy composites. The observed mechanical reinforcement might be an enhan-
cement of mechanical interlocking between the epoxy matrix and RGO due to the unique 
planar structures. 
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1. Introduction

Graphene, the thinnest known material in the cosmos, exhibits many outstanding proper-
ties, like extremely high strength (~130 GPa) and modulus (~1000 GPa) [1], high thermal 
conductivity (~5000 W/(m3∙K)) [2], and very high electrical conductivity (~6000 S/cm) [3], 
all due to its sp2-hybridized carbon atoms.

There have been many studies on graphene synthesis methods; the most common synthe-
sis method is a top-down processing of graphite to graphene oxide (GO) by strong oxida-
tion and mechanical exfoliation [4]. GO is an insulator by nature due to an abundance of 
oxygen-functional groups, but it can be reduced chemically or thermally to form electrically 
conductive graphene materials.

Graphene has been used as a nanofiller in a wide range of polymer matrices including 
polystyrene [5], polyurethane [6], polypropylene [7], polycarbonate [8], poly(vinyl alcohol) 
[9], and so on. Graphene based nanocomposites have been investigated for their superior elec-
trical, thermal, and mechanical properties [10-12]. The incorporation of various nano-sized 
reinforcements into an epoxy matrix can maximize the advantages of structural composites 
[13-15]. Remarkable improvements in physical and mechanical properties of polymer com-
posites have been reported upon the addition of a small amount of graphene [16-18].

In order to enhance the properties of graphene based nanocomposites, improving the dis-
persion of the graphene in polymer has remained the most important issue to be resolved. 
It is well known that graphene will normally become entangled due to intermolecular van 
der Waals forces and will aggregate in the polymer matrix. The resulting poor dispersion of 
graphene significantly lowers its efficiency as a reinforcement, and in particular, can lead to 
a different impact on the mechanical properties of polymer composites. A variety of process-
ing methods, including in situ polymerization, melt mixing, and solution blending, have 
been proposed to disperse graphene in polymer matrix [19,20]. 
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ential scanning calorimetry (DSC, Model DSC 200, NETZSCH 
Co.) from 50 to 250°C at a heating rate of 10°C/min under an 
N2 flow. The flexural properties were measured by an Instron 
universal testing machine (UTM, Model LR5K, LLOYD Co.) 
according to ASTM D-790. The average values were obtained 
from the results of five tests. The fracture surfaces of RGO/epoxy 
composites after the flexural stress test were observed by scan-
ning electron microscopy (SEM, Model S-4200, Hitachi Co.).

3. Results and Discussion

XRD patterns of graphite showed an intensive diffraction 
(002) peak at 2 theta = 26.6°, reflecting a d-spacing of 3.35 Å 
between the graphitic interlayers. It was found that a well-defined 
diffraction peak of GO was observed at 2 theta = 12.8°, indicat-
ing that the interlayer spacing or gap increased to 6.91 Å. After 
the chemical reduction, the asymmetric diffraction peak of RGO 
was revealed at around 2 theta = 11° and 24°. This result con-
firmed that the RGO were exfoliated into stacking layered sheets. 

DSC curves of the RGO/epoxy mixtures are shown in Fig. 2, 

In this work, we prepared chemically reduced GO (RGO) 
for use as a mechanically enhancing filler in an epoxy matrix. 
The nanocomposites of epoxy resin with RGO were prepared 
by thermal curing process. The flexural properties of the RGO/
epoxy nanocomposites were investigated as a function of RGO 
loading amount.

2. Experimental

2.1. Materials and sample preparation

GO was produced using the Hummers’ method as a starting ma-
terial for graphene [21]. The chemically reduced GO was prepared 
as follows: 1) 1 g of GO was dispersed into distilled water using 
ultra-sonication; 2) 1 g of hydroquinone was added to the GO solu-
tion, and the mixture was heated to 150°C for 24 h; 3) the GO solu-
tion was thoroughly dried at 80°C in a vacuum oven after washing 
with distilled water and ethanol at a ratio of 1:1.

The epoxy polymer used in this study was diglycidyl ether 
of bisphenol A, supplied by Kukdo Chem. of Korea (YD-128, 
an epoxide equivalent weight of 185-190 g/eq, a density of ap-
proximately 1.16 g/cm3 at 25°C). 4,4›-Diaminodiphenyl meth-
ane was used as a curing agent for the epoxy polymer. The 
epoxy polymer and RGO powder were fed into a beaker, with 
ultra-sonication at 80°C for 12 h to enhance the dispersion state 
of the RGO in the epoxy matrix. The composites were mixed 
with RGO at the weight percent loading range of 0-0.5 wt%. The 
stoichiometric amount of curing agent was added to the RGO/
epoxy mixtures. The mixtures were poured into a designed mold 
and degassed at 120°C for 20 min in a vacuum oven. Then, the 
curing processes were performed, at 120°C for 1 h and 150°C 
for 2 h. Finally, samples were post-cured at 180°C for 1 h in a 
convection oven. 

2.2. Characterization

The micro-structural characteristics of the GO and RGO were 
investigated using X-ray diffraction (XRD, Model D2 Phaser, 
BRUKER Co.). The curing behaviors were monitored by differ-

Fig. 1. Wide X-ray diffraction patterns of graphite (a), graphene oxide 
(GO) (b), and reduced GO (RGO) synthesized in this study (c). Fig. 2. Differential scanning calorimetry curves of reduced graphene 

oxide (RGO)/epoxy nanocomposites with different RGO loading amounts. 

Fig. 3. Flexural strength and modulus of graphene oxide (RGO)/epoxy 
composites with different RGO loading amounts. 
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4. Conclusions

In this work, we prepared chemically RGO for use as a me-
chanically enhancing filler in an epoxy matrix. The mechanical 
properties of the RGO/epoxy nanocomposites were investigated 
as a function of RGO loading amount. From the results, it was 
found that the flexural strength and modulus of RGO/epoxy 
nanocomposites were ~24.5% and ~25.7% greater, respectively, 
than those of the neat epoxy composites, when the added RGO 
amount was 0.4 wt% . 
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