DOI QR코드

DOI QR Code

A Development of Hourly Rainfall Simulation Technique Based on Bayesian MBLRP Model

Bayesian MBLRP 모형을 이용한 시간강수량 모의 기법 개발

  • Received : 2014.01.09
  • Accepted : 2014.03.04
  • Published : 2014.06.01

Abstract

Stochastic rainfall generators or stochastic simulation have been widely employed to generate synthetic rainfall sequences which can be used in hydrologic models as inputs. The calibration of Poisson cluster stochastic rainfall generator (e.g. Modified Bartlett-Lewis Rectangular Pulse, MBLRP) is seriously affected by local minima that is usually estimated from the local optimization algorithm. In this regard, global optimization techniques such as particle swarm optimization and shuffled complex evolution algorithm have been proposed to better estimate the parameters. Although the global search algorithm is designed to avoid the local minima, reliable parameter estimation of MBLRP model is not always feasible especially in a limited parameter space. In addition, uncertainty associated with parameters in the MBLRP rainfall generator has not been properly addressed yet. In this sense, this study aims to develop and test a Bayesian model based parameter estimation method for the MBLRP rainfall generator that allow us to derive the posterior distribution of the model parameters. It was found that the HBM based MBLRP model showed better performance in terms of reproducing rainfall statistic and underlying distribution of hourly rainfall series.

추계학적 강수발생 및 모의기법은 수문학적 모형의 입력 자료로써 널리 이용되고 있다. 그러나 Modified Bartlett-Lewis Rectangular Pulse(MBLRP)와 같은 추계학적 포아송 클러스터 강수생성 모형에 대해서 국부최적화 방법을 통한 매개변수 추정 방법은 매개변수의 신뢰성에 상당한 영향을 주는 것으로 알려져 있다. 최근에는 MBLRP 모형의 국부해추정 문제를 해소하기 위하여 Particle Swarm Optimization (PSO) 또는 Shuffled Complex Evolution developed at The University of Arizona (SCE-UA) 등 매개변수 추정 성능이 우수한 전역최적화기법이 도입되고 있지만, 제한된 매개변수 공간에서 항상 신뢰성 있는 매개변수 추정이 가능한 것은 아니다. 뿐만 아니라, 모형의 매개변수들이 갖고 있는 불확실성에 관한 연구는 아직 충분히 논의되지 않았다. 이러한 관점에서 본 연구는 Bayesian 기법과 연계한 MBLRP 모형을 개발하였으며 각 매개변수들의 사후분포(Posterior Distribution)를 유도하여 매개변수가 내포하는 불확실성을 정량적으로 평가하였다. 그 결과 관측값에 대한 시간단위 이하 강수발생 통계치를 효과적으로 복원하고 있음을 확인할 수 있었다.

Keywords

References

  1. Boughton, W. and Droop, O. (2003). "Continuous simulation for design flood estimation - A review." Environmental Modelling and Software, Vol. 18, No. 4, pp. 309-318. https://doi.org/10.1016/S1364-8152(03)00004-5
  2. Cowpertwait, P., Isham, V. and Onof, C. (2007). "Point process models of rainfall: Developments for Fine-scale Structure." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, Vol. 463, No. 2086, pp. 2569-2587. https://doi.org/10.1098/rspa.2007.1889
  3. Duan, Q., Sorooshian, S. and Gupta, V. K. (1994). "Optimal use of the SCE-UA global optimization method for calibrating watershed models." Journal of Hydrology, Vol. 158, No. 3, pp. 265-284. https://doi.org/10.1016/0022-1694(94)90057-4
  4. Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2003). Bayesian data analysis. CRC press, United States of America.
  5. George, E. I. and McCulloch, R. E. (1993). "Variable selection via Gibbs sampling." Journal of the American Statistical Association, Vol. 88, No. 423, pp. 881-889. https://doi.org/10.1080/01621459.1993.10476353
  6. Kim, K. W. and Yoo, C. S. (2008). "A selection of the point rainfall process model considered on temporal clustering characteristics." Journal of Korea Water Resources Association, Vol. 41, No. 11, pp. 747-759 (in Korean). https://doi.org/10.3741/JKWRA.2008.41.7.747
  7. Kyoung, M. S., Sivakumar, B., Kim, H. S. and Kim, B. S. (2008). "Chaotic disaggregation of daily rainfall time series." Journal of Korea Water Resources Association, Vol. 41, No. 9, pp. 959-967 (in Korean). https://doi.org/10.3741/JKWRA.2008.41.9.959
  8. Kim, D. K., Shin, J. Y., Lee, S. O. and Kim, T. W. (2013). "The application of the poisson cluster rainfall generation model to the flood analysis." Journal of Korea Water Resources Association, Vol. 46, No. 5, pp. 439-447 (in Korean). https://doi.org/10.3741/JKWRA.2013.46.5.439
  9. Onof, C., Chandler, R., Kakou, A., Northrop, P., Wheater, H. and Isham, V. (2000). "Rainfall modelling using Poisson-cluster processes: A review of developments." Stochastic Environmental Research and Risk Assessment, Vol. 14, No. 6, pp. 384-411. https://doi.org/10.1007/s004770000043
  10. Rodriguez-Iturbe, I., Cox, D. and Isham, V. (1987). "Some models for rainfall based on stochastic point processes." Proceedings of the Royal Society of London. A, Mathematical and Physical Sciences, Vol. 410, No. 1839, pp. 269-288. https://doi.org/10.1098/rspa.1987.0039
  11. Rodriguez-Iturbe, I., Cox, D. and Isham, V. (1988). "A point process model for rainfall: Further developments." Proceedings of the Royal Society of London. A, Mathematical and Physical Sciences, Vol. 417, No. 1853, pp. 283-298. https://doi.org/10.1098/rspa.1988.0061
  12. Vanhaute, W., Vandenberghe, S., Scheerlinck, K., De Baets, B. and Verhoest, N. (2012). "Calibration of the modified Bartlett-Lewis model using global optimization techniques and alternative objective functions." Hydrology and Earth System Sciences, Vol. 16, No. 3, pp. 873-891. https://doi.org/10.5194/hess-16-873-2012
  13. Verhoest, N., Troch, P. A. and De Troch, F. P. (1997). "On the applicability of Bartlett-Lewis rectangular pulses models in the modeling of design storms at a point." Journal of Hydrology, Vol. 202, No. 1, pp. 108-120. https://doi.org/10.1016/S0022-1694(97)00060-7
  14. Wheater, H., Isham, V., Chandler, R., Onof, C., Stewart, E., Bellone, E., Yang, C., Lekkas, D., Lourmas, G. and Segond M. (2006). Joint DEFRA/EA flood and coastal erosion risk management R&D programme: Improved Methods for National Spatial-temporal Rainfall and Evaporation Modelling for BSM, R&D Technical Report.

Cited by

  1. A Study on Regionalization of Parameters for Sacramento Continuous Rainfall-Runoff Model Using Watershed Characteristics vol.48, pp.10, 2015, https://doi.org/10.3741/JKWRA.2015.48.10.793
  2. A development of multisite hourly rainfall simulation technique based on neyman-scott rectangular pulse model vol.49, pp.11, 2016, https://doi.org/10.3741/JKWRA.2016.49.11.913
  3. A development of downscaling scheme for sub-daily extreme precipitation using conditional copula model vol.49, pp.10, 2016, https://doi.org/10.3741/JKWRA.2016.49.10.863