DOI QR코드

DOI QR Code

Phase Transformation of Sn-Pb-Bi Solder for Photovoltaic Ribbon: A Real-time Synchrotron X-ray Scattering Study

  • Cho, Tae-Sik (Department of Nano Materials Engineering, Kyungpook National University)
  • Received : 2013.12.04
  • Accepted : 2014.04.11
  • Published : 2014.06.25

Abstract

The phase transformation of Sn-Pb-Bi solder for photovoltaic ribbon during soldering was studied using real-time synchrotron x-ray scattering. At room temperature, Sn and Pb crystal phases in the solder existed separately. By heating to $92^{\circ}C$, a new PbBi alloy crystal phase was formed, which grew further up to $160^{\circ}C$. The Sn crystal phase first started to melt at $160^{\circ}C$, and was mostly melted at $165^{\circ}C$. In contrast, the Pb and PbBi crystal phases started to melt at $165^{\circ}C$, and were mostly melted at $170^{\circ}C$. The useful result was obtained, that the solder's melting temperature decreased from $183^{\circ}C$ to $170^{\circ}C$ by addition of a small amount of Bi atoms to the eutectic Sn62-Pb38 (wt%) solder. Our study first revealed the detailed in-situ phase transformation of Sn-Pb-Bi solder during heating to the eutectic temperature. Considering the results of peel strength and hardness, adding 1 wt% of Bi atoms to the Sn62-Pb38 (wt%) solder produced an appropriate composition.

Keywords

References

  1. D. M. Bagnall and M. Boreland, Energy Policy, 36, 4390 (2008) [DOI: http://dx.doi.org/10.1016/j.enpol.2008.09.070].
  2. G. F. Wakefield, W. Hills, and Calif, Method for Ribbon Solar Cell Fabrication, U.S. Patent 4,323,419 (1982).
  3. M. G. Chu, Y. Shiohara, and M. C. Flemings, Metallurgical transactions A, 15, 1303 (1984) [DOI: http://dx.doi.org/10.1007/BF02648558].
  4. J. H. Lee, Y. H. Lee, and Y. S. Kim, Scripta Meterialia, 42, 789 (2000) [DOI: http://dx.doi.org/10.1016/S1359-6462(99)00431-5].
  5. M. Schaefer, R. A. Fournelle, and J. Liang, J. of Electronic Materials, 27, 1167 (1998) [DOI: http://dx.doi.org/10.1007/s11664-998-0066-7].
  6. C. Y. Liu, C. Chen, and K. N. Tu, J. of Applied Physics, 88, 5703 (2000) [DOI: http://dx.doi.org/10.1063/1.1319327].
  7. J. H. Lee, Y. H. Lee, and Y. S. Kim, Scripta Mater., 42, 789 (2000) [DOI: http://dx.doi.org/10.1016/S1359-6462(99)00431-5].
  8. M. Schaefer, R. A. Fournelle, and J. Liang, J. of Electronic Materials, 27, 1167 (1998) [DOI: http://dx.doi.org/10.1007/s11664-998-0066-7].
  9. C. Y. Liu, C. Chen, and K. N. Tu, J. Appl. Phys., 88, 5703 (2000) [DOI: http://dx.doi.org/10.1063/1.1319327].
  10. S. K. Kang, P. S. Rai, and S. Purushothaman, J. of Electronic Materials, 25, 1113 (1996) [DOI: http://dx.doi.org/10.1007/BF02659912].
  11. Z. Mei and J. W. Morris Jr., J. of Electronic Materials, 21, 599 (1992) [DOI: http://dx.doi.org/10.1007/BF02655427].
  12. H. W. Miao and J. G. Duh, Mater. Chem. and Phys., 71, 255 (2001) [DOI: http://dx.doi.org/10.1016/S0254-0584(01)00298-X].
  13. C. H. Raeder, L. E. Felton, V. A. Tanzi, and D. B. Knorr, J. of Electronic Materials, 23, 611 (1994) [DOI: http://dx.doi.org/10.1007/BF02653346].
  14. T. S. Cho, J. H. Je, and D. Y. Noh, Appl. Phys. Lett., 76, 303 (2000) [DOI: http://dx.doi.org/10.1063/1.125727].
  15. T. S. Cho and J. W. Kim, J. of Nanosci. and Nanotech., 12, 3646 (2013) [DOI: http://dx.doi.org/10.1166/jnn.2012.5594].
  16. B. D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, Prentice Hall, 1956) p. 102.
  17. H. H. Manko, Solders and Soldering (McGraw-Hill, New York, 2001), p. 2.
  18. M. N. Islam, Y. C. Chan, M. J. Rizvi, and W. Jillek, J. of Alloys and Compounds, 400, 136 (2005) [DOI: http://dx.doi.org/10.1016/j.jallcom.2005.03.053].