DOI QR코드

DOI QR Code

Epigallocatechin-3-gallate Inhibits Tax-dependent Activation of Nuclear Factor Kappa B and of Matrix Metalloproteinase 9 in Human T-cell Lymphotropic Virus-1 Positive Leukemia Cells

  • Published : 2014.02.01

Abstract

Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol molecule from green tea and is known to exhibit antioxidative as well as tumor suppressing activity. In order to examine EGCG tumor invasion and suppressing activity against adult T-cell leukemia (ATL), two HTLV-1 positive leukemia cells (HuT-102 and C91-PL) were treated with non-cytotoxic concentrations of EGCG for 2 and 4 days. Proliferation was significantly inhibited by 100 ${\mu}M$ at 4 days, with low cell lysis or cytotoxicity. HTLV-1 oncoprotein (Tax) expression in HuT-102 and C91-PL cells was inhibited by 25 ${\mu}M$ and 125 ${\mu}M$ respectively. The same concentrations of EGCG inhibited NF-kB nuclearization and stimulation of matrix metalloproteinase-9 (MMP-9) expression in both cell lines. These results indicate that EGCG can inhibit proliferation and reduce the invasive potential of HTLV-1-positive leukemia cells. It apparently exerted its effects by suppressing Tax expression, manifested by inhibiting the activation of NF-kB pathway and induction of MMP-9 transcription in HTLV-1 positive cells.

Keywords

References

  1. Afaq F, Adhami VM, Ahmad N, et al (2003). inhibition of ultraviolet b-mediated activation of nuclear factor ${\kappa}b$ in normal human epidermal keratinocytes by green tea constituent (-)-epigallocatechin-3-gallate. Oncogene, 22, 1035-44. https://doi.org/10.1038/sj.onc.1206206
  2. Ahmad N, Gupta S, Mukhtar H (2000). green tea polyphenol epigallocatechin-3-gallate differentially modulates nuclear factor ${\kappa}b$ in cancer cells versus normal cells. Arch Biochem Biophys, 376, 338-46. https://doi.org/10.1006/abbi.2000.1742
  3. Azar R, Alard A, Susini C, et al (2009). 4E-BP1 is a target of Smad4 essential for TGFbeta-mediated inhibition of cell proliferation. EMBO J, 28, 3514-22. https://doi.org/10.1038/emboj.2009.291
  4. Azar R, Najib S, Lahlou H, et al (2008). Phosphatidylinositol 3-kinase-dependent transcriptional silencing of the translational repressor 4E-BP1. Cell Mol Life Sci, 65, 3110-7. https://doi.org/10.1007/s00018-008-8418-2
  5. Azar R, Susini C, Bousquet C, et al (2010). Control of contact-inhibition by 4E-BP1 upregulation. Cell Cycle, 9, 1241-5. https://doi.org/10.4161/cc.9.7.11047
  6. Bazarbachi A, Plumelle Y, Carlos Ramos J, et al (2010). Meta-analysis on the use of zidovudine and interferon-alfa in adult T-cell leukemia/lymphoma showing improved survival in the leukemic subtypes. J Clin Oncol, 28, 4177-83. https://doi.org/10.1200/JCO.2010.28.0669
  7. El-Sabban ME, Nasr R, Dbaibo G, et al (2000). Arsenic-interferon-alpha-triggered apoptosis in HTLV-I transformed cells is associated with tax down-regulation and reversal of NF-kappa B activation. Blood, 96, 2849-55.
  8. Feng X, Heyden NV, Ratner L (2003). Alpha interferon inhibits human T-cell leukemia virus type 1 assembly by preventing Gag interaction with rafts. J Virol, 77, 13389-95. https://doi.org/10.1128/JVI.77.24.13389-13395.2003
  9. Graff JR, Boghaert ER, De Benedetti A, et al (1995). Reduction of translation initiation factor 4E decreases the malignancy of ras-transformed cloned rat embryo fibroblasts. Int J Cancer, 60, 255-63.
  10. Harakeh S, Abu-El-Ardat K, Diab-Assaf M, et al (2008). Epigallocatechin-3-gallate induces apoptosis and cell cycle arrest in HTLV-1-positive and -negative leukemia cells. Med Oncol, 25, 30-9. https://doi.org/10.1007/s12032-007-0036-6
  11. Harakeh S, Diab-Assaf M, Abu-El-Ardat K, et al (2006). Mechanistic aspects of apoptosis induction by l-lysine in both HTLV-1-positive and -negative cell lines. Chem Biol Interact, 164, 102-14. https://doi.org/10.1016/j.cbi.2006.09.005
  12. Jeong SJ, Radonovich M, Brady JN, et al (2004). HTLV-I tax induces a novel interaction between p65/rela and p53 that results in inhibition of p53 transcriptional activity. Blood, 104, 1490-97. https://doi.org/10.1182/blood-2003-12-4174
  13. Jiang Y, Muschel RJ (2002). Regulation of matrix metalloproteinase-9 (MMP-9) by translational efficiency in murine prostate carcinoma cells. Cancer Res, 62, 1910-4.
  14. Kannian P, Green PL (2010). Human T lymphotropic virus type 1 (HTLV-1): molecular biology and oncogenesis. Viruses, 2, 2037-77. https://doi.org/10.3390/v2092037
  15. Kchour G, Tarhini M, Kooshyar MM, et al (2009). Phase 2 study of the efficacy and safety of the combination of arsenic trioxide, interferon alpha, and zidovudine in newly diagnosed chronic adult T-cell leukemia/lymphoma (ATL). Blood, 113, 6528-32. https://doi.org/10.1182/blood-2009-03-211821
  16. Kim HS, Kim MH, Jeong M, et al (2004). EGCG blocks tumor promoter-induced MMP-9 expression via suppression of MAPK and AP-1 activation in human gastric AGS cells. Anticancer Res, 24, 747-53.
  17. Lairmore MD, Haines R, Anupam R (2012). Mechanisms of human T-lymphotropic virus type 1 transmission and disease. Curr Opin Virol, 2, 474-81. https://doi.org/10.1016/j.coviro.2012.06.007
  18. Li HC, Yashiki S, Sonoda J, et al (2000). Green tea polyphenols induce apoptosis in vitro in peripheral blood T lymphocytes of adult T-cell leukemia patients. Jpn J Cancer Res, 91, 34-40. https://doi.org/10.1111/j.1349-7006.2000.tb00857.x
  19. Marcais A, Suarez F, Sibon D, et al (2013). Therapeutic options for adult T-cell leukemia/lymphoma. Curr Oncol Rep, 15, 457-64. https://doi.org/10.1007/s11912-013-0332-6
  20. Martineau Y, Azar R, Muller D, et al (2013). Pancreatic tumours escape from translational control through 4E-BP1 loss. Oncogene. Apr 8 [Epub ahead of print]
  21. Mori N, Yamada Y, Ikeda S, et al (2002). Bay 11-7082 Inhibits transcription factor NF-kB and induces apoptosis of htlv-i-infected t-cell lines and primary adult t-cell leukemia cells. Blood, 100, 1828-34. https://doi.org/10.1182/blood-2002-01-0151
  22. Nasr R, Hajj HE, Kfoury Y, et al (2011). Controversies in targeted therapy of adult T cell leukemia/lymphoma: ON Target or OFF target effects? Viruses, 3, 750-69. https://doi.org/10.3390/v3060750
  23. Nicot C, Mahieux R, Takemoto S, et al (2000). Bcl-X(L) is up-regulated by HTLV-I and HTLV-II in vitro and in ex vivo ATLL samples. Blood, 96, 275-81.
  24. Oeckinghaus A, Hayden MS, Ghosh S (2011). Crosstalk in NF-kB signaling pathways. Nat Immunol, 12, 695-708.
  25. Ohsugi T, Horie R, Kumasaka T, et al (2005). In vivo antitumor activity of the NF-kB inhibitor dehydroxymethylepoxyquinomicin in a mouse model of adult T-cell Leukemia. Carcinogenesis, 26, 1382-8. https://doi.org/10.1093/carcin/bgi095
  26. Okamoto K, Fujisawa J, Reth M, et al (2006). Human T-cell leukemia virus type-I oncoprotein Tax inhibits Fas-mediated apoptosis by inducing cellular FLIP through activation of NF-kappaB. Genes Cells, 11, 177-91. https://doi.org/10.1111/j.1365-2443.2006.00927.x
  27. Otsuka T, Ogo T, Eto T, et al (1998). Growth inhibition of leukemic cells by (-)-epigallocatechingallate, the main constituent of green tea. Life Sci, 63, 1397-403. https://doi.org/10.1016/S0024-3205(98)00406-8
  28. Pyronnet S, Imataka H, Gingras AC, et al (1999). Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. EMBO J, 18, 270-9. https://doi.org/10.1093/emboj/18.1.270
  29. Qin J, Wang Y, Bai Y, et al (2012). Epigallocatechin-3-gallate inhibits bladder cancer cell invasion via suppression of NF-kB-mediated matrix metalloproteinase-9 expression. Mol Med Rep, 6, 1040-4.
  30. Rauch DA, Ratner L (2011). Targeting HTLV-1 activation of $NF{\kappa}B$ in mouse models and ATLL patients. Viruses, 3, 886-900. https://doi.org/10.3390/v3060886
  31. Sen T, Dutta A, Chatterjee A (2010). Epigallocatechin-3-gallate (EGCG) down regulates gelatinase-B (MMP-9) by involvement of FAK/ERK/NFkappaB and AP-1 in the human breast cancer cell line MDA-MB-231. Anticancer Drugs, 21, 632-44. https://doi.org/10.1097/CAD.0b013e32833a4385
  32. Singh BN, Shankar S and Srivastava RK (2011). Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem Pharmacol, 82, 1807-21. https://doi.org/10.1016/j.bcp.2011.07.093
  33. Singh M, Singh R, Bhui K, et al (2011). Tea polyphenols induce apoptosis through mitochondrial pathway and by inhibiting nuclear factor-kappaB and Akt activation in human cervical cancer cells. Oncol Res, 19, 245-57. https://doi.org/10.3727/096504011X13021877989711
  34. Suganuma M, Saha A and Fujiki H (2011). New cancer treatment strategy using combination of green tea catechins and anticancer drugs. Cancer Sci, 102, 317-23. https://doi.org/10.1111/j.1349-7006.2010.01805.x
  35. Syed DN, Afaq F, Kweon MH, et al (2007). Green tea polyphenol EGCG suppresses cigarette smoke condensate-induced NF-kappaB activation in normal human bronchial epithelial cells. Oncogene, 26, 673-82. https://doi.org/10.1038/sj.onc.1209829
  36. Tabakin-Fix, I. Azran-Shaish, Y Schavinsky-Khrapunsky, et al (2006). HumanT-cell leukemia virus type 1: transition from latent infection to pathogenic progression and implications for molecular therapy. Curr Cancer Ther Rev, 2, 101-13. https://doi.org/10.2174/157339406776872843
  37. Tanimura S, Kadomoto R, Tanaka T, et al (2005). Suppression of tumor cell invasiveness by hydrolyzable tannins (plant polyphenols) via the inhibition of matrix metalloproteinase-2/-9 activity. Biochem Biophys Res Commun, 330, 1306-13. https://doi.org/10.1016/j.bbrc.2005.03.116
  38. Uota S, Zahidunnabi Dewan M, Saitoh Y, et al (2012). An $I{\kappa}B$ kinase 2 inhibitor IMD-0354 suppresses the survival of adult T-cell leukemia cells. Cancer Sci, 103, 100-6. https://doi.org/10.1111/j.1349-7006.2011.02110.x
  39. Van Aller GS, Carson JD, Tang W, et al (2011). Epigallocatechingallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor. Biochem Biophys Res Commun, 406, 194-9. https://doi.org/10.1016/j.bbrc.2011.02.010
  40. Vezina A, Chokor R, Annabi B (2012). EGCG targeting efficacy of NF-kB downstream gene products is dictated by the monocytic/macrophagic differentiation status of promyelocytic leukemia cells. Cancer Immunol Immunother, 61, 2321-31. https://doi.org/10.1007/s00262-012-1301-x
  41. Wang J, Li J, Huang Y, et al (2013). Bcl-3 suppresses Tax-induced NF-kB activation through p65 nuclear translocation blockage in HTLV-1-infected cells. Int J Oncol, 42, 269-76.
  42. Yan Z, Yong-Guang T, Fei-Jun L, et al (2004). Interference effect of epigallocatechin-3-gallate on targets of nuclear factor ${\kappa}B$ signal transduction pathways activated by EB virus encoded latent membrane protein 1. Int J Biochem Cell Biol, 36, 1473-81.
  43. Yang J, Wei D, Liu J (2005). Repressions of MMP-9 expression and NF-kappa B localization are involved in inhibition of lung carcinoma 95-D cell invasion by (-)-epigallocatechin-3-gallate. Biomed Pharmacother, 59, 98-103. https://doi.org/10.1016/j.biopha.2005.01.004
  44. Yao J, Liu Y, Wang X, et al (2009). UVB radiation induces human lens epithelial cell migration via NADPH oxidase-mediated generation of reactive oxygen species and up-regulation of matrix metalloproteinases. Int J Mol Med, 24, 153-9.
  45. Yoshita M, Higuchi M, Takahashi M, et al (2012). The activation of mTOR by human T-cell leukemia virus type 1 Tax is important for the transformation of mouse T cells to IL-2-independent growth. Cancer Sci, 103, 369-74. https://doi.org/10.1111/j.1349-7006.2011.02123.x
  46. Zane L, Sibon D, Legras C, et al (2010). Clonal expansion of HTLV-1 positive CD8+ cells relies on cIAP-2 but not on c-FLIP expression. Virology, 407, 341-51. https://doi.org/10.1016/j.virol.2010.07.023
  47. Zhang J, Balestrieri E, Grelli S, et al (2001). Efficacy of 3'-azido 3'deoxythymidine (AZT) in preventing HTLV-1 transmission to human cord blood mononuclear cells. Virus Res, 78, 67-78. https://doi.org/10.1016/S0168-1702(01)00285-4
  48. Zhou F, Zhou H, Wang T, et al (2012). Epigallocatechin-3-gallate inhibits proliferation and migration of human colon cancer SW620 cells in vitro. Acta Pharmacol Sin, 33, 120-6. https://doi.org/10.1038/aps.2011.139

Cited by

  1. Targeting Cancer with Nano-Bullets: Curcumin, EGCG, Resveratrol and Quercetin on Flying Carpets vol.15, pp.9, 2014, https://doi.org/10.7314/APJCP.2014.15.9.3865
  2. Effects of nutrients on matrix metalloproteinases in human T-lymphotropic virus type 1 positive and negative malignant T-lymphocytes vol.45, pp.5, 2014, https://doi.org/10.3892/ijo.2014.2638
  3. Epigallocatechin 3-Gallate Ameliorates Bile Duct Ligation Induced Liver Injury in Mice by Modulation of Mitochondrial Oxidative Stress and Inflammation vol.10, pp.5, 2015, https://doi.org/10.1371/journal.pone.0126278
  4. Preventive Effects of a Major Component of Green Tea, Epigallocathechin-3-Gallate, on Hepatitis-B Virus DNA Replication vol.16, pp.10, 2015, https://doi.org/10.7314/APJCP.2015.16.10.4199
  5. Multi-Target Cytotoxic Actions of Flavonoids in Blood Cancer Cells vol.16, pp.12, 2015, https://doi.org/10.7314/APJCP.2015.16.12.4843
  6. A Review of the Antiviral Role of Green Tea Catechins vol.22, pp.8, 2017, https://doi.org/10.3390/molecules22081337