References
- Chen D, Zuo G, Li C, et al (2009). Total saponins of Panax ginseng (TSPG) promote erythroid differentiation of human CD34+ cells via EpoR-mediated JAK2/STAT5 signaling pathway. J Ethnopharmacol, 126, 215-20. https://doi.org/10.1016/j.jep.2009.08.043
- Gao Y, Deng J, Yu X-F, et al (2011). Ginsenoside Rg1 inhibits vascular intimal hyperplasia in balloon-injured rat carotid artery by down-regulation of extracellular signal-regulated kinase 2. J Ethnopharmacol, 138, 472-8. https://doi.org/10.1016/j.jep.2011.09.029
- Kilpivaara O, and Levine R (2008). JAK2 and MPL mutations in myeloproliferative neoplasms: discovery and science. Leukemia, 22, 1813-7. https://doi.org/10.1038/leu.2008.229
- Kitamura T, Tange T, Terasawa T, et al (1989). Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. J Cell Physiol, 140, 323-34. https://doi.org/10.1002/jcp.1041400219
- Kumar S M, Zhang G, Bastian B C, et al (2011). Erythropoietin receptor contributes to melanoma cell survival in vivo. Oncogene, 31, 1649-60.
- Lee H J, Daver N, Kantarjian H M, et al (2013). The Role of JAK Pathway Dysregulation in the Pathogenesis and Treatment of Acute Myeloid Leukemia. Clin Cancer Res, 19, 327-35. https://doi.org/10.1158/1078-0432.CCR-12-2087
- Li Q-F, Shi S-L, Liu Q-R, et al (2008). Anticancer effects of ginsenoside Rg1, cinnamic acid, and tanshinone IIA in osteosarcoma MG-63 cells: nuclear matrix downregulation and cytoplasmic trafficking of nucleophosmin. Int J Biochem Cell Biol, 40, 1918-29. https://doi.org/10.1016/j.biocel.2008.01.031
- Liu J, Cai S-Z, Zhou Y, et al (2012). Senescence as a consequence of ginsenoside rg1 response on k562 human leukemia cell Line. Asian Pac J Cancer Prev, 13, 6191-6. https://doi.org/10.7314/APJCP.2012.13.12.6191
- Lord J D, McIntosh B C, Greenberg P D, et al (2000). The IL-2 receptor promotes lymphocyte proliferation and induction of the c-myc, bcl-2, and bcl-x genes through the trans-activation domain of Stat5. J Immunol, 164, 2533-41. https://doi.org/10.4049/jimmunol.164.5.2533
-
Ma Z-c, Gao Y, Wang Y-g, et al (2006). Ginsenoside Rg1 inhibits proliferation of vascular smooth muscle cells stimulated by tumor necrosis factor-
$\alpha$ . Acta Pharmacol Sin, 27, 1000-6. https://doi.org/10.1111/j.1745-7254.2006.00331.x - O'Shea J J, Gadina M, and Schreiber R D (2002). Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell, 109, 121-31. https://doi.org/10.1016/S0092-8674(02)00701-8
- Pelletier S, Gingras S, Funakoshi-Tago M, et al (2006). Two domains of the erythropoietin receptor are sufficient for Jak2 binding/activation and function. Mol Cell Biol, 26, 8527-38. https://doi.org/10.1128/MCB.01035-06
- Raghavendran H R B, Sathyanath R, Shin J, et al (2012). Panax ginseng modulates cytokines in bone marrow toxicity and myelopoiesis: ginsenoside Rg1 partially supports myelopoiesis. PloS one, 7, 33733. https://doi.org/10.1371/journal.pone.0033733
- Salomons G S, Brady H J, Verwijs-Jansen M, et al (1997). The Baxalfa: Bcl-2 ratio modulates the response to dexamethasone in leukaemic cells and is highly variable in childhood acute leukemia. Int J Cancer, 71, 959-65. https://doi.org/10.1002/(SICI)1097-0215(19970611)71:6<959::AID-IJC9>3.0.CO;2-X
- Santos F P, and Verstovsek S (2011). JAK2 inhibitors: What's the true therapeutic potential? Blood reviews, 25, 53-63. https://doi.org/10.1016/j.blre.2010.10.004
- Shi S L, Li Q F, Liu Q R, et al (2009). Nuclear matrix protein, prohibitin, was down regulated and translocated from nucleus to cytoplasm during the differentiation of osteosarcoma MG-63 cells induced by ginsenoside Rg1, cinnamic acid, and tanshinone IIA (RCT). J Cell Biochem, 108, 926-34. https://doi.org/10.1002/jcb.22324
- Tam W F, Hahnel P S, Schuler A, et al (2013). STAT5 Is Crucial to Maintain Leukemic Stem Cells in Acute Myelogenous Leukemias Induced by MOZ-TIF2. Cancer Res, 73, 373-84. https://doi.org/10.1158/0008-5472.CAN-12-0255
- Verdier F, Walrafen P, Hubert N, et al (2000). Proteasomes regulate the duration of erythropoietin receptor activation by controlling down-regulation of cell surface receptors. J Biol Chem, 275, 18375-81. https://doi.org/10.1074/jbc.275.24.18375
- Walz C, Cross N C, Van Etten et al (2008). Comparison of mutated ABL1 and JAK2 as oncogenes and drug targets in myeloproliferative disorders. Leukemia, 22, 1320-34. https://doi.org/10.1038/leu.2008.133
- Wang C-Z, Aung H H, Ni M, et al (2007). Red American ginseng: ginsenoside constituents and antiproliferative activities of heat-processed Panax quinquefolius roots. Planta Med, 73, 669. https://doi.org/10.1055/s-2007-981524
- Wang Y, Ye X, Ma Z, et al (2008). Induction of cytochrome P450 1A1 expression by ginsenoside Rg1 and Rb1 in HepG2 cells. Eur J Pharmacol, 601, 73-8. https://doi.org/10.1016/j.ejphar.2008.10.057
- Warsch W, Walz C, Sexl V (2013). JAK of all trades: JAK2- STAT5 as novel therapeutic targets in BCR-ABL1+ chronic myeloid leukemia. Blood, 122, 2167-75. https://doi.org/10.1182/blood-2013-02-485573
- Wu P, Zhang N, Wang X, et al (2012). The erythropoietin/ erythropoietin receptor signaling pathway promotes growth and invasion abilities in human renal carcinoma cells. PloS one, 7, 45122. https://doi.org/10.1371/journal.pone.0045122
- Zamzami N, Brenner C, Marzo I, et al (1998). Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins. Oncogene, 16, 2265-82. https://doi.org/10.1038/sj.onc.1201989
- Zuo G, Guan T, Chen D, et al (2009). Total saponins of Panax ginseng induces K562 cell differentiation by promoting internalization of the erythropoietin receptor. Am J Chin Med, 37, 747-57. https://doi.org/10.1142/S0192415X09007211
Cited by
- Ginsenoside Rg1 attenuates invasion and migration by inhibiting transforming growth factor-β1-induced epithelial to mesenchymal transition in HepG2 cells vol.11, pp.4, 2014, https://doi.org/10.3892/mmr.2014.3098
- Ginsenoside 20(S)-Rg3 Targets HIF-1α to Block Hypoxia-Induced Epithelial-Mesenchymal Transition in Ovarian Cancer Cells vol.9, pp.9, 2014, https://doi.org/10.1371/journal.pone.0103887
- Potential Neuroprotective Activity of Ginseng in Parkinson’s Disease: A Review vol.10, pp.1, 2015, https://doi.org/10.1007/s11481-014-9569-6
- The Study of Mountain Ginseng-added High Fat Diet on Anti-Apoptosis of Skeletal Muscle vol.104, pp.3, 2015, https://doi.org/10.14578/jkfs.2015.104.3.383
- Proliferative and Inhibitory Activity of Siberian ginseng (Eleutherococcus senticosus) Extract on Cancer Cell Lines; A-549, XWLC-05, HCT-116, CNE and Beas-2b vol.16, pp.11, 2015, https://doi.org/10.7314/APJCP.2015.16.11.4781
- Angelica Sinensis Polysaccharide Induces Erythroid Differentiation of Human Chronic Myelogenous Leukemia K562 Cells vol.16, pp.9, 2015, https://doi.org/10.7314/APJCP.2015.16.9.3715
- Saponins from Chinese Medicines as Anticancer Agents vol.21, pp.10, 2016, https://doi.org/10.3390/molecules21101326
- Ginsenoside Rg1 protects human umbilical cord blood-derived stromal cells against tert-Butyl hydroperoxide-induced apoptosis through Akt–FoxO3a–Bim signaling pathway vol.421, pp.1-2, 2016, https://doi.org/10.1007/s11010-016-2786-y
- vol.32, pp.7, 2017, https://doi.org/10.1002/tox.22416
- The Effect of Transarterial Chemoembolization in Combination With Kang’ai Injection on Patients With Intermediate Stage Hepatocellular Carcinoma: A Prospective Study pp.1552-695X, 2017, https://doi.org/10.1177/1534735417734913
- Ginsenoside Rb1 inhibits hypoxia-induced epithelial-mesenchymal transition in ovarian cancer cells by regulating microRNA-25 vol.14, pp.4, 2017, https://doi.org/10.3892/etm.2017.4889
- vol.29, pp.1, 2018, https://doi.org/10.1080/09540105.2018.1490700
- Ginsenoside Rg3 Inhibition of Thyroid Cancer Metastasis Is Associated with Alternation of Actin Skeleton vol.21, pp.9, 2018, https://doi.org/10.1089/jmf.2017.4144
- for Inflammation-Related Chronic Diseases: A Review on the Modulations of Multiple Pathways vol.46, pp.05, 2018, https://doi.org/10.1142/S0192415X18500519
- Carbon nanotubes in the delivery of anticancer herbal drugs vol.13, pp.10, 2018, https://doi.org/10.2217/nnm-2017-0397