References
- Baylin SB, Esteller M, Rountree MR, et al (2001). Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet, 10, 687-92. https://doi.org/10.1093/hmg/10.7.687
- Beetstra S, Suthers G, Dhillon V, et al (2008). Methionine-dependence phenotype in the de novo pathway in BRCA1 and BRCA2 mutation carriers with and without breast cancer. Cancer Epidemiol Biomarkers Prev, 17, 2565-71. https://doi.org/10.1158/1055-9965.EPI-08-0140
- Burcos T, Toma M, Stavarachi M, et al (2010). MTRR polymorphism and the risk for colorectal and breast cancer in Romanian patients-a preliminary study. Chirurgia , 105, 379-82.
- Choi SW, Mason JB (2000). Folate and carcinogenesis: an integrated scheme. J Nutr, 130, 129-32. https://doi.org/10.1093/jn/130.2.129
- Christensen BC, Kelsey KT, Zheng S, et al (2010). Breast cancer DNA methylation profiles are associated with tumor size and alcohol and folate intake. PLoS Gene, 6, 1001043. https://doi.org/10.1371/journal.pgen.1001043
- Duthie SJ (2011). Folate and cancer: how DNA damage, repair and methylation impact on colon carcinogenesis. J Inherit Metab Dis, 34, 101-9. https://doi.org/10.1007/s10545-010-9128-0
- Gast A, Bermejo JL, Flohr T, et al (2007). Folate metabolic gene polymorphisms and childhood acute lymphoblastic leukemia: a case-control study. Leukemia, 21, 320-5. https://doi.org/10.1038/sj.leu.2404474
- Kotsopoulos J, Zhang WW, Zhang S, et al (2008). Polymorphisms in folate metabolizing enzymes and transport proteins and the risk of breast cancer. Breast Cancer Res Treat, 112, 585-93. https://doi.org/10.1007/s10549-008-9895-6
- Kwak SY, Kim UK, Cho HJ, et al (2008). Methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) gene polymorphisms as risk factors for hepatocellular carcinoma in a Korean population. Anticancer Res, 28, 2807-11.
- Lajin B, Alhaj Sakur A, Ghabreau L, Alachkar A (2012). Association of polymorphisms in one-carbon metabolizing genes with breast cancer risk in Syrian women. Tumour Biol, 33, 1133-9. https://doi.org/10.1007/s13277-012-0354-y
- Leclerc D, Wilson A, Dumas R, et al (1998). Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. Proc Natl Acad Sci USA, 95, 3059-64. https://doi.org/10.1073/pnas.95.6.3059
- Lissowska J, Gaudet MM, Brinton LA, et al (2007). Genetic polymorphisms in the one-carbon metabolism pathway and breast cancer risk: a population-based case-control study and meta-analyses. Int J Cancer, 120, 2696-703. https://doi.org/10.1002/ijc.22604
- Marmot MG, Altman DG, Cameron DA, et al (2013). The benefits and harms of breast cancer screening: an independent review. Br J Cancer, 108, 2205-40. https://doi.org/10.1038/bjc.2013.177
- Maruti SS, Ulrich CM, White E (2009). Folate and one-carbon metabolism nutrients from supplements and diet in relation to breast cancer risk. Am J Clin Nutr, 89, 624-33. https://doi.org/10.3945/ajcn.2008.26568
- Naushad SM, Pavani A, Digumarti RR, Gottumukkala SR, Kutala VK (2011). Epistatic interactions between loci of one-carbon metabolism modulate susceptibility to breast cancer. Mol Biol Rep, 38, 4893-901. https://doi.org/10.1007/s11033-010-0631-z
- Naushad SM, Reddy CA, Rupasree Y, et al (2011). Cross-talk between one-carbon metabolism and xenobiotic metabolism: implications on oxidative DNA damage and susceptibility to breast cancer. Cell Biochem Biophys, 6, 715-23.
- Russo J, Yang X, Hu YF, et al (1998). Biological and molecular basis of human breast cancer. Front Biosci, 3, 944-60. https://doi.org/10.2741/A335
- Sangrajrang S, Sato Y, Sakamoto H, et al (2010). Genetic polymorphisms in folate and alcohol metabolism and breast cancer risk: a case-control study in Thai women. Breast Cancer Res Treat, 123, 885-93. https://doi.org/10.1007/s10549-010-0804-4
- Shrubsole MJ, Gao YT, Cai Q, et al (2006). MTR and MTRR polymorphisms, dietary intake, and breast cancer risk. Cancer Epidemiol Biomarkers Prev, 15, 586-8. https://doi.org/10.1158/1055-9965.EPI-05-0576
- Siegel R, Naishadham D, Jemal A (2013). Cancer statistics, 2013. CA Cancer J Clin, 63, 11-30. https://doi.org/10.3322/caac.21166
- Stern LL, Mason JB, Selhub J, Choi SW (2000). Genomic DNA hypomethylation, a characteristic of most cancers, is present in peripheral leukocytes of individuals who are homozygous for the C677T polymorphism in the methylenetetrahydrofolate reductase gene. Cancer Epidemiol Biomarkers Prev, 9, 849-53.
- Suzuki T, Matsuo K, Hirose K, et al (2008). One-carbon metabolism-related gene polymorphisms and risk of breast cancer. Carcinogenesis, 29, 356-62. https://doi.org/10.1093/carcin/bgm295
- Weiner AS, Boyarskikh UA, Voronina EN, et al (2012). Polymorphisms in the folate-metabolizing genes MTR, MTRR, and CBS and breast cancer risk. Cancer Epidemiol, 36, 95-100. https://doi.org/10.1016/j.canep.2011.11.010
- Widschwendter M, Jones PA (2002). DNA methylation and breast carcinogenesis. Oncogene, 2, 5462-82.
- Wilson A, Platt R, Wu Q, et al (1999). A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida. Mol Genet Metab, 67, 317-23. https://doi.org/10.1006/mgme.1999.2879
- Xu X, Chen J (2009). One-carbon metabolism and breast cancer: an epidemiological perspective. J Genet Genomics, 36, 203-14. https://doi.org/10.1016/S1673-8527(08)60108-3
- Xu X, Gammon MD, Zhang H, et al (2007). Polymorphisms of one-carbon-metabolizing genes and risk of breast cancer in a population-based study. Carcinogenesis, 28, 1504-9. https://doi.org/10.1093/carcin/bgm061
Cited by
- Genes with Lung Cancer in a Turkish Population vol.21, pp.7, 2017, https://doi.org/10.1089/gtmb.2017.0062
- Nonassociation of homocysteine gene polymorphisms with treatment outcome in South Indian Tamil Rheumatoid Arthritis patients pp.1591-9528, 2018, https://doi.org/10.1007/s10238-017-0469-y