References
- Aitken A (2006). 14-3-3 proteins: a historic overview. Semin Cancer Biol, 16, 162-72. https://doi.org/10.1016/j.semcancer.2006.03.005
- Ajjappala BS, Kim YS, Kim MS, et al (2009). 14-3-3gamma is stimulated by IL-3 and promotes cell proliferation. J Immunol, 182, 1050-60. https://doi.org/10.4049/jimmunol.182.2.1050
- Fu H, Subramanian RR, Masters SC (2000). 14-3-3 proteins:structure, function, and regulation. Annu Rev Pharmacol Toxicol, 40, 617-47. https://doi.org/10.1146/annurev.pharmtox.40.1.617
- Herbst RS, Heymach JV, Lippman SM (2008). Lung cancer. N Engl J Med, 359, 1367-80. https://doi.org/10.1056/NEJMra0802714
- Hermeking H (2003). The 14-3-3 cancer connection. Nat Rev Cancer, 3, 931-43. https://doi.org/10.1038/nrc1230
- Horie M, Suzuki M, Takahashi E, et al (1999). Cloning, expression, and chromosomal mapping of the human 14-3-3gamma gene (YWHAG) to 7q11.23. Genomics, 60, 241-3. https://doi.org/10.1006/geno.1999.5887
- Jemal A, Bray F, Center MM, et al (2011). Global cancer statistics. CA Cancer J Clin, 61, 69-90. https://doi.org/10.3322/caac.20107
- Jin YH, Kim YJ, Kim DW, et al (2008). Sirt2 interacts with 14-3-3 beta/gamma and down-regulates the activity of p53. Biochem Biophys Res Commun, 368, 690-5. https://doi.org/10.1016/j.bbrc.2008.01.114
- Ko BS, Lai IR, Chang TC, et al (2011). Involvement of 14-3-3gamma overexpression in extrahepatic metastasis of hepatocellular carcinoma. Hum Pathol, 42, 129-35. https://doi.org/10.1016/j.humpath.2010.01.028
- Lirdprapamongkol K, Kramb JP, Suthiphongchai T, et al (2009). Vanillin suppresses metastatic potential of human cancer cells through PI3K inhibition and decreases angiogenesis in vivo. J Agric Food Chem, 57, 3055-63. https://doi.org/10.1021/jf803366f
- Morrison DK (2009). The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol, 19, 16-23. https://doi.org/10.1016/j.tcb.2008.10.003
- Peng CY, Graves PR, Thoma RS, et al (1997). Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science, 277, 1501-05. https://doi.org/10.1126/science.277.5331.1501
- Qi W, Liu X, Chen W, et al (2003). Overexpression of 14-3-3gamma causes polyploidization in H322 lung cancer cells. Mol Carcinog, 46, 847-56.
- Qi W, Liu X, Qiao D, et al (2005). Isoform-specific expression of 14-3-3 proteins in human lung cancer tissues. Int J Cancer, 113, 359-63. https://doi.org/10.1002/ijc.20492
- Radhakrishnan VM, Martinez JD (2010). 14-3-3gamma induces oncogenic transformation by stimulating MAP kinase and PI3K signaling. PLoS One, 5, 11433. https://doi.org/10.1371/journal.pone.0011433
- Radhakrishnan VM, Putnam CW, Qi W, et al (2011). P53 suppresses expression of the 14-3-3 gamma oncogene. BMC Cancer, 11, 378. https://doi.org/10.1186/1471-2407-11-378
- Samuel T, Weber HO, Rauch P, et al (2001). The G2/M regulator 14-3-3sigma prevents apoptosis through sequestration of Bax. J Biol Chem, 276, 45201-06. https://doi.org/10.1074/jbc.M106427200
- Siegel R, Naishadham D, Jemal A (2012). Cancer statistics, 2012. CA Cancer J Clin, 62, 10-29. https://doi.org/10.3322/caac.20138
- Song X, Chen X, Yamaguchi H, et al (2006). Initiation of cofilin activity in response to EGF is uncoupled from cofilin phosphorylation and dephosphorylation in carcinoma cells. J Cell Sci, 119, 2871-81. https://doi.org/10.1242/jcs.03017
- Song Y, Yang Z, Ke Z, et al (2012). Expression of 14-3-3gamma in patients with breast cancer: correlation with clinicopathological features and prognosis. Cancer Epidemiol, 36, 533-6. https://doi.org/10.1016/j.canep.2012.05.003
-
Umbricht CB, Evron E, Gabrielson E, et al (2001). Hypermethylation of 14-3-
$3\sigma$ (stratifin) is an early event in breast cancer. Oncogene, 20, 3348-53. https://doi.org/10.1038/sj.onc.1204438 - Wang W, Shakes DC (1996). Molecular evolution of the 14-3-3 protein family. J Mol Evol, 43, 384-98. https://doi.org/10.1007/BF02339012
- Wu Q, Liu CZ, Tau LY, et al (2012). The clinicopathological and prognostic impact of 14-3-3 protein isoforms expression in human cholangiocarcinoma by immunohistochemistry. Asian Pac J Cancer Prev, 13, 1253-9. https://doi.org/10.7314/APJCP.2012.13.4.1253
- Xing H, Zhang S, Weinheimer C, et al (2000). 14-3-3 proteins block apoptosis and differentially regulate MAPK cascades. EMBO J, 19, 349-58. https://doi.org/10.1093/emboj/19.3.349
- Youlden DR, Cramb SM, Baade PD (2008). The international epidemiology of lung cancer: geographical distribution and secular trends. J Thorac Oncol, 3, 819-31. https://doi.org/10.1097/JTO.0b013e31818020eb
- Yu XY, Zhang Z, Zhang GJ, Guo KF, Kong CZ (2012). Knockdown of Cdc25B in renal cell carcinoma is associated with decreased malignant features. Asian Pac J Cancer Prev, 13, 931-5. https://doi.org/10.7314/APJCP.2012.13.3.931
Cited by
- TFPI2AS1, a novel lncRNA that inhibits cell proliferation and migration in lung cancer vol.16, pp.23, 2017, https://doi.org/10.1080/15384101.2017.1373223
- Highlights on immune checkpoint inhibitors in non–small cell lung cancer vol.39, pp.3, 2017, https://doi.org/10.1177/1010428317695013
- Extracellular vesicles with altered tetraspanin CD9 and CD151 levels confer increased prostate cell motility and invasion vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-27180-z
- Expression of ribosomal and actin network proteins and immunochemotherapy resistance in diffuse large B cell lymphoma patients vol.181, pp.6, 2018, https://doi.org/10.1111/bjh.15259
- lncINS-IGF2 Promotes Cell Proliferation and Migration by Promoting G1/S Transition in Lung Cancer vol.18, pp.1533-0338, 2019, https://doi.org/10.1177/1533033818823029