References
- Ahmed Ali HA, Di J, Mei W, et al (2014). Antitumor activity of lentivirus-mediated interleukin-12 gene modified dendritic cells in human lung cancer in vitro. Asian Pac J Cancer Prev, 15, 611-6. https://doi.org/10.7314/APJCP.2014.15.2.611
- Becher B, Prat A, Antel JP (2000). Brain-immune connection:immuno-regulatory properties of CNS-resident cells. Glia, 29, 293-304. https://doi.org/10.1002/(SICI)1098-1136(20000215)29:4<293::AID-GLIA1>3.0.CO;2-A
- Cen YH, Guo WW, Luo B, et al (2012). Knockdown of OY-TES-1 by RNAi causes cell cycle arrest and migration decrease in bone marrow-derived mesenchymal stem cells. Cell Biol Int, 36, 917-22. https://doi.org/10.1042/CBI20120037
- Chi DD, Merchant RE, Rand R, et al (1997). Molecular detection of tumor-associated antigens shared by human cutaneous melanomas and gliomas. Am J Pathol, 150, 2143-52.
- Chong CE, Lim KP, Gan CP, et al (2012). Over-expression of MAGED4B increases cell migration and growth in oral squamous cell carcinoma and is associated with poor disease outcome. Cancer Lett, 321, 18-26. https://doi.org/10.1016/j.canlet.2012.03.025
- Coral S, Sigalotti L, Altomonte M, et al (2002). 5-aza-2’-deoxycytidine-induced expression of functional cancer testis antigens in human renal cell carcinoma: immunotherapeutic implications. Clin Cancer Res, 8, 2690-5.
- Dhodapkar MV, Osman K, Teruya-Feldstein J, et al (2003). Expression of cancer/testis (CT) antigens MAGE-A1, MAGE-A3, MAGE-A4, CT-7, and NY-ESO-1 in malignant gammopathies is heterogeneous and correlates with site, stage and risk status of disease. Cancer Immun, 3, 9.
- Dos Santos NR, Torensma R, De Vries TJ, et al (2000). Heterogeneous expression of the SSX cancer/testis antigens in human melanoma lesions and cell lines. Cancer Res, 60, 1654-62.
- Duffour MT, Chaux P, Lurquin C, et al (1999). A MAGE-A4 peptide presented by HLA-A2 is recognized by cytolytic T lymphocytes. Eur J Immunol, 29, 3329-37. https://doi.org/10.1002/(SICI)1521-4141(199910)29:10<3329::AID-IMMU3329>3.0.CO;2-7
- Germano S, Kennedy S, Rani S, et al (2011). MAGED4B is a novel marker of poor prognosis and potential therapeutic target involved in breast cancer tumorigenesis. Int J Cancer, 130, 1991-2002.
- Inoue H, Mori M, Honda M, et al (1995). The expression of tumor-rejection antigen “MAGE” genes in human gastric carcinoma. Gastroenterology, 109, 1522-5. https://doi.org/10.1016/0016-5085(95)90639-8
- Ito S, Kawano Y, Katakura H, et al (2006). Expression of MAGED4, a novel MAGE family antigen, is correlated with tumor-cell proliferation of non-small cell lung cancer. Lung Cancer, 51, 79-88. https://doi.org/10.1016/j.lungcan.2005.08.012
- Kawano Y, Sasaki M, Nakahira K, et al (2001). Structural characterization and chromosomal localization of the MAGE-E1 gene. Gene, 277, 129-37. https://doi.org/10.1016/S0378-1119(01)00698-9
- Kramer BF, Schoor O, Kruger T, et al (2005). MAGED4-expression in renal cell carcinoma and identification of an HLA-A*25-restricted MHC class I ligand from solid tumor tissue. Cancer Biol Ther, 4, 943-8. https://doi.org/10.4161/cbt.4.9.1907
- Louis DN, Ohgaki H, Wiestler OD, et al (2007). The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol, 114, 97-109. https://doi.org/10.1007/s00401-007-0243-4
- Luo B, Yun X, Fan R, et al (2013). Cancer testis antigen OYTES-1 expression and serum immunogenicity in colorectal cancer: its relationship to clinicopathological parameters. Int J Clin Exp Pathol, 6, 2835-45.
- Meek DW, Marcar L (2012). MAGE-A antigens as targets in tumour therapy. Cancer Lett, 324, 126-32. https://doi.org/10.1016/j.canlet.2012.05.011
- Morse MA, Garst J, Osada T, et al (2005). A phase I study of dexosome immunotherapy in patients with advanced nonsmall cell lung cancer. J Transl Med, 3, 9. https://doi.org/10.1186/1479-5876-3-9
- Ohgaki H, Kleihues P (2005). Epidemiology and etiology of gliomas. Acta Neuropathol, 109, 93-108. https://doi.org/10.1007/s00401-005-0991-y
- Prins RM, Odesa SK, Liau LM (2003). Immunotherapeutic targeting of shared melanoma-associated antigens in a murine glioma model. Cancer Res, 63, 8487-91.
- Rosenberg SA, Yang JC, Restifo NP (2004). Cancer immunotherapy: moving beyond current vaccines. Nat Med, 10, 909-15. https://doi.org/10.1038/nm1100
- Sampson JH, Archer GE, Ashley DM, et al (1996). Subcutaneous vaccination with irradiated, cytokine-producing tumor cells stimulates CD8+ cell-mediated immunity against tumors located in the “immunologically privileged” central nervous system. Proc Natl Acad Sci USA, 93, 10399-404. https://doi.org/10.1073/pnas.93.19.10399
- Sasaki M, Nakahira K, Kawano Y, et al (2001). MAGE-E1, a new member of the melanoma-associated antigen gene family and its expression in human glioma. Cancer Res, 61, 4809-14.
- Serrano A, Garcia A, Abril E, Garrido F, Ruiz-Cabello F (1996). Methylated CpG points identified within MAGE-1 promoter are involved in gene repression. Int J Cancer, 68, 464-70. https://doi.org/10.1002/(SICI)1097-0215(19961115)68:4<464::AID-IJC11>3.0.CO;2-5
- Sigalotti L, Coral S, Nardi G, et al (2002). Promoter methylation controls the expression of MAGE2, 3 and 4 genes in human cutaneous melanoma. J Immunother, 25, 16-26. https://doi.org/10.1097/00002371-200201000-00002
- Sigalotti L, Fratta E, Coral S, et al (2004). Intratumor heterogeneity of cancer/testis antigens expression in human cutaneous melanoma is methylation-regulated and functionally reverted by 5-aza-2’-deoxycytidine. Cancer Res, 64, 9167-71. https://doi.org/10.1158/0008-5472.CAN-04-1442
- Thaker PH, Deavers M, Celestino J, et al (2004). EphA2 expression is associated with aggressive features in ovarian carcinoma. Clin Cancer Res, 10, 5145-50. https://doi.org/10.1158/1078-0432.CCR-03-0589
- Weber J, Salgaller M, Samid D, et al (1994). Expression of the MAGE-1 tumor antigen is up-regulated by the demethylating agent 5-aza-2’-deoxycytidine. Cancer Res, 54, 1766-71.
- Wischnewski F, Pantel K, Schwarzenbach H (2006). Promoter demethylation and histone acetylation mediate gene expression of MAGE-A1, -A2, -A3, and -A12 in human cancer cells. Mol Cancer Res, 4, 339-49. https://doi.org/10.1158/1541-7786.MCR-05-0229
- Wu TF, Zhang W, Su ZP, et al (2012). UHRF2 mRNA expression is low in malignant glioma but silencing inhibits the growth of U251 glioma cells in vitro. Asian Pac J Cancer Prev, 13, 5137-42. https://doi.org/10.7314/APJCP.2012.13.10.5137
- Yang L, Ng KY, Lillehei KO (2003). Cell-mediated immunotherapy: a new approach to the treatment of malignant glioma. Cancer Control, 10, 138-47.
- Zeybek U, Yaylim I, Ozkan NE, et al (2013). Cyclin D1 Gene G870A Variants and Primary Brain Tumors. Asian Pac J Cancer Prev, 14, 4101-6. https://doi.org/10.7314/APJCP.2013.14.7.4101
- Zhang J, Yu J, Gu J, et al (2004). A novel protein-DNA interaction involved with the CpG dinucleotide at -30 upstream is linked to the DNA methylation mediated transcription silencing of the MAGE-A1 gene. Cell Res, 14, 283-94. https://doi.org/10.1038/sj.cr.7290229
- Zhang SC, Huang P, Zhao YX, et al (2013). Soluble expression of recombinant human Smp30 for detecting serum Smp30 antibody levels in hepatocellular carcinoma patients. Asian Pac J Cancer Prev, 14, 2383-6. https://doi.org/10.7314/APJCP.2013.14.4.2383
Cited by
- Effect of Cisplatin on the Frequency and Immuno-inhibitory Function of Myeloid-derived Suppressor Cells in A375 Melanoma Model vol.16, pp.10, 2015, https://doi.org/10.7314/APJCP.2015.16.10.4329
- Decitabine Treatment of Glioma-Initiating Cells Enhances Immune Recognition and Killing vol.11, pp.8, 2016, https://doi.org/10.1371/journal.pone.0162105
- Understanding the epigenetic regulation of tumours and their microenvironments: opportunities and problems for epigenetic therapy vol.241, pp.1, 2017, https://doi.org/10.1002/path.4832