DOI QR코드

DOI QR Code

Study on the Variation of Optical Properties of Asian Dust Plumes according to their Transport Routes and Source Regions using Multi-wavelength Raman LIDAR System

다파장 라만 라이다 시스템을 이용한 발원지 및 이동 경로에 따른 황사의 광학적 특성 변화 연구

  • Shin, Sung-Kyun (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Noh, Youngmin (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Lee, Kwonho (Department of Geoinformatics Engineering, Kyungil University) ;
  • Shin, Dongho (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Kim, KwanChul (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Kim, Young J. (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology (GIST))
  • 신성균 (광주과학기술원 환경공학부) ;
  • 노영민 (광주과학기술원 환경공학부) ;
  • 이권호 (경일대학교 공간정보공학과) ;
  • 신동호 (광주과학기술원 환경공학부) ;
  • 김관철 (광주과학기술원 환경공학부) ;
  • 김영준 (광주과학기술원 환경공학부)
  • Received : 2014.02.26
  • Accepted : 2014.03.04
  • Published : 2014.04.30

Abstract

The continuous observations for atmospheric aerosol were carried out during 3 years (2009-2011) by using a multi-wavelength Raman lidar at the Gwangju Institute of Science and Technology (GIST), Korea ($35.11^{\circ}N$, $126.54^{\circ}E$). The particle depolarization ratios were retrieved from the observations in order to distinguish the Asian dust layer. The vertical information of Asian dust layers were used as input parameter for the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model for analysis of its backward trajectories. The source regions and transport pathways of the Asian dust layer were identified. The most frequent source region of Asian dust in Korea was Gobi desert during observation period in this study. The statistical analysis on the particle depolarization ratio of Asian dust was conducted according to their transport route in order to retrieve the variation of optical properties of Asian dust during long-range transport. The transport routes were classified into the Asian dust which was transported to observation site directly from the source regions, and the Asian dust which was passed over pollution regions of China. The particle depolarization ratios of Asian dust which were transported via industrial regions of China was ranged 0.07-0.1, whereas, the particle depolarization ratio of Asian dust which was transported directly from the source regions to observation site were comparably higher and ranged 0.11-0.15. It is considered that the pure Asian dust particle from source regions were mixed with pollution particles, which is likely to spherical particle, during transportation so that the values of particle depolarization of Asian dust mixed with pollution was decreased.

본 연구에서는 광주과학기술원의 다파장 라만 라이다 시스템을 이용하여 2009년부터 2011년, 3년동안 광주에서 대기 에어로졸의 관측을 실시하였다. 관측된 라이다 신호의 분석으로부터 산출된 편광소멸도를 이용하여 황사의 층을 구분해 내었다. 구분 된 황사의 층의 고도에 따른 정보들은 Hybrid Single Particle Lagrangian Integrated Trajectory(HYSPLIT) 모델을 이용한 황사 층의 역궤적 분석에 이용되었고, 그 정보들을 통하여, 황사 층의 발원지 및 유입경로를 규명할 수 있었다. 한반도로 유입되는 황사는 고비사막을 기원으로 하는 경우가 가장 많은 것으로 나타났으며, 또한, 황사의 이동경로에 따른 광학적 특성 변화를 규명하기 위해, 중국 공업지역을 통과하여 유입된 황사 층과 발원지로부터 한반도로 직접적으로 유입된 황사의 구분하여 경로에 따른 입자 편광소멸도의 통계 분석을 실시하였다. 중국 공업지역을 통과하여 한반도로 유입된 황사의 편광소멸도는 0.07-0.1의 값을 보인 반면, 발원지로부터 공업지역을 경유하지 않고 직접 유입된 황사의 편광소멸도는 0.11-0.15로 상대적으로 높은 값을 보였다. 이는 발원지에서 발생한 순수 황사입자가 이동 중에 공업지역에서 발생한 오염입자와 혼합하여 황사층의 편광소멸도를 감소시킨 것으로 사료된다.

Keywords

References

  1. Anderson, T.L., S.J. Masonis, D.S. Covert, N.C. Ahlquist, S.G. Howell, A.D. Clarke, and C.S. McNaughton, 2003. Variability of aerosol optical properties derived from in situ aircraft measurements during ACE Asia. Journal of Geophysical Research, 108(D23): 8647.
  2. Behrendt, A., and T. Nakamura, 2002. Calculation of the calibration constant of polarization lidar and its dependency of atmospheric temperature. Optics Express, 10: 805-817. https://doi.org/10.1364/OE.10.000805
  3. Cairo, F., D. Donfrancesco, G., A. Adriani, L. Pulvirenti, and F. Fierli, 1999. Comparison of various linear depolarization parameters measured by lidar. Applied Optics, 38(21): 4425-4432. https://doi.org/10.1364/AO.38.004425
  4. Chin, M., P. Ginoux, S. Kinne, O. Torres, B.N. Holben, B.N. Duncan, R.V. Martin, J.A. Logan, A. Higurashi, and T. Nakajima, 2002. Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements. Journal of the Atmospheric Sciences, 59(3): 461-483. https://doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2
  5. Chun, Y., J. Kim, J.C. Choi, K.O. Boo, S.N. Oh and M. Lee, 2001. Characteristic number size distribution of aerosol during Asian dust period in Korea. Atmospheric Environment, 35(15): 2715-2721. https://doi.org/10.1016/S1352-2310(00)00404-0
  6. Draxler, R.R., and G.D. Rolph, 2003. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model access via NOAA ARL READY website (http://www. arl. noaa.gov/ready/hysplit4. html). NOAA Air Resources Laboratory, Silver Spring.
  7. Freudenthaler, V., M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Muller, D. Althausen, M. Wirth, and A. Fix, 2009. Depolarization ratio profiling at several wavelength in pure Saharan dust during SAMUM 2006. Tellus B, 61: 165-179. https://doi.org/10.1111/j.1600-0889.2008.00396.x
  8. Ginoux, P., J.M. Prospero, O. Torres, and M. Chin, 2004. Long-term simulation of global dust distribution with the GOCART model: correlation with North Atlantic Oscillation. Environmental Modelling & Software, 19(2): 113-128. https://doi.org/10.1016/S1364-8152(03)00114-2
  9. Husar, R.B., D.M. Tratt, B.A. Schichtel, S.R. Falke, F. Li, D. Jaffe, S. Gass, T. Gill, N.S. Laulainen, F. Lu, M. C. Reheis, Y. Chun, D. Westphal, B. N. Holben, C. Gueymard, I. McKendry, N. Kuring, G.C. Feldman, C. McClain, R.J. Frouin, J. Merrill, D. DuBois, F. Vignola, T. Murayama, S. Nickovic, W.E. Wilson, K. Sassen, N. Sugimoto, and W.C. Malm, 2001. Asian dust events of April 1998. Journal of Geophysical Research, 106(D16): 18317-18330. https://doi.org/10.1029/2000JD900788
  10. Noh, Y.M. and K.H. Lee, 2013. Characterization of optical properties of long-range transported Asian dust in Northeast Asian, Korean Journal of Remote Sensing, 29(2): 243-251 (in Korean with English abstract) https://doi.org/10.7780/kjrs.2013.29.2.8
  11. Noh, Y.M., Y.J. Kim, B.C. Choi, and T. Murayama, 2007. Aerosol lidar ratio characteristics measured by a multi-wavelength Raman lidar system at Anmyeon Island, Korea, Atmospheric Research, 86(1): 76-87. https://doi.org/10.1016/j.atmosres.2007.03.006
  12. Noh, Y.M., Y.J. Kim, and D. Muller, 2008. Seasonal characteristics of lidar ratios measured with a Raman lidar at Gwangju, Korea in spring and autumn. Atmospheric Environment, 42(9): 2208-2224. https://doi.org/10.1016/j.atmosenv.2007.11.045
  13. Ramanathan, V., and Y. Feng, 2009. Air pollution, greenhouse gases and climate change: Global and regional perspectives, Atmospheric Environment, 43(1): 37-50. https://doi.org/10.1016/j.atmosenv.2008.09.063
  14. Sakai, T., T. Nagai, M. Nakazato, Y. Mano, and T. Matsumura, 2003. Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba. Applied Optics, 42(36): 7103-7116. https://doi.org/10.1364/AO.42.007103
  15. Shimizu, A., N. Sugimoto, I. Matsui, K. Arao, I. Uno, T. Murayama, N. Kagawa, K. Aoki, A. Uchiyama, and A. Yamazaki, 2004. Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE Asia. Journal of Geophysical Research, 109: D19S17.
  16. Shin, S., D. Muller, Y.J. Kim, B. Tatarov, D. Shin, P. Seifert, and Y.M. Noh, 2013. The retrieval of the Asian dust depolarization ratio in Korea with the correction of the polarization-dependent transmission. Asia-Pacific Journal of Atmospheric Sciences, 49(1): 19-25. https://doi.org/10.1007/s13143-013-0003-4
  17. Stocker, T., Q. Dahe, and G.K.E. Plattner, 2013. Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers (IPCC, 2013).
  18. Yu, X., T. Cheng, J. Chen, and Y. Liu, 2006. A comparison of dust properties between China continent and Korea, Japan in East Asia. Atmospheric Environment, 40(30): 5787-5797. https://doi.org/10.1016/j.atmosenv.2006.05.013
  19. Zhang, X., R. Arimoto, Z. An, T. Chen, G. Zhang, G. Zhu, and X. Wang, 1993. Atmospheric trace elements over source regions for Chinese dust: Concentrations, sources and atmospheric deposition on the Loess Plateau. Atmospheric Environment, 27(13): 2051-2067. https://doi.org/10.1016/0960-1686(93)90277-6

Cited by

  1. 3-D Perspectives of Atmospheric Aerosol Optical Properties over Northeast Asia Using LIDAR on-board the CALIPSO satellite vol.30, pp.5, 2014, https://doi.org/10.7780/kjrs.2014.30.5.2
  2. ECMWF/MACC와 OPAC자료를 이용한 시너지 에어로솔 모델 산출 vol.34, pp.6, 2014, https://doi.org/10.7780/kjrs.2018.34.6.1.2
  3. 토픽모델링을 이용한 대한원격탐사학회지의 연구주제 분류 및 연구동향 분석: 자연·환경재해 분야를 중심으로 vol.37, pp.6, 2021, https://doi.org/10.7780/kjrs.2021.37.6.2.9