참고문헌
- Chang, C.I., 1999, Spectral information divergence for hyperspectral image analysis, Proc. of International Geoscience and Remote Sensing Symposium, Hamburg, Germany, June 28-July 2, pp.509-511.
- Choi, J., D. Kim, B. Lee, Y. Kim and K. Yu, 2006, Hyperspectral image fusion algorithm based on two-stage spectral unmixing method, Korean Journal of Remote Sensing, 22(4): 295-304. https://doi.org/10.7780/kjrs.2006.22.4.295
- Jeong, S., C. Park and S. Kim, 2006, Land cover classification of the Korean penisula using linear spectral mixture analysis of MODIS multi-temporal data, Korean Journal of Remote Sensing, 22(6): 553-563. https://doi.org/10.7780/kjrs.2006.22.6.553
- Kim, D., 2003, A study on sub-pixel detection for hyperspectral imagery using the linear spectral mixing model, Master's Thesis, Seoul National University.
- Kim, K., 2011, A modified iterative N-FINDR algorithm for fully automatic extraction of endmembers from hyperspectral imagery, Korean Journal of Remote Sensing, 27(5): 565-572. https://doi.org/10.7780/kjrs.2011.27.5.565
- Kim, S. and K. Lee, 2004, Application of linear spectral mixture analysis to geological thematic mapping using LANDSAT 7 ETM+ and ASTER satellite imageries, Korean Journal of Remote Sensing, 20(6) : 369-382. https://doi.org/10.7780/kjrs.2004.20.6.369
- Kim, J., K. Hwang and S. Kim, 2013, The evaluation of correlation between disturbance intensity and stand development by natural forest community type classification, Journal of Forest Science, 29(3): 219-225. https://doi.org/10.7747/JFS.2013.29.3.219
- Kim, S., K. Lee, J. Ma and M. Kook, 2005, Current status of hyperspectral remote sensing: principle, data processing techniques, and applications, Korean Journal of Remote Sensing, 21(4): 341-369. https://doi.org/10.7780/kjrs.2005.21.4.341
- Lee, J. and K. Lee, 2003, Analysis of forest cover information extracted by spectral mixture analysis, Korean Journal of Remote Sensing, 19(6): 411-419. https://doi.org/10.7780/kjrs.2003.19.6.411
- Lillesand, T.M., and R.W. Kiefer, 1979, Remote sensing and image interpretation, John Wiley & Sons, New York, USA.
- Ministry of Environment, 2002, Construction of landcover map using remote sensing image.
- Neville, R. A., K. Staennz, T. Szeredi, J. Lefebvre and P. Hauff, 1999, Automatic endmember extraction from hyperspectral data for mineral exploration, Proc. of 21st Canada Symposium on Remote Sensing, Ottawa, ON, Canada, pp.21-24.
- Plaza, A. and C.I. Chang, 2005, An improved N-FINDR algorithm in implementation, Conference on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, SPIE Symposium on Defense and Security, SPIE, Orlando, Florida, vol. 5806, pp. 298-306.
- Roberts, D.A., M. Gardner, R. Church, S. Ustin, G. Scheer and R.O. Green, 1998, Mapping chaparral in the santa monica mountains using multiple endmember spectral mixture models, Remote Sensing of Environment, 65(3): 267-279. https://doi.org/10.1016/S0034-4257(98)00037-6
- Shin, J., S. Kim, J. Yoon, T. Kim and K. Lee, 2006, Spectral mixture analysis using hyperspectral image for hydrological land cover classification in urban area, Korean Journal of Remote Sensing, 22(6): 565-574. https://doi.org/10.7780/kjrs.2006.22.6.565
- Song, A., A. Chang, J. Choi and Y. Kim, 2013, Application evaluation of endmember extracton algorithm on the AISA hyperspectral images, Korean Journal of Remote Sensing, 29(5): 527-535. https://doi.org/10.7780/kjrs.2013.29.5.8
- Thoreau, R.T., C.C. Nicholas, R.G. Nicholas and A.V. James, 2009, Extraction urban vegetation characteristic using spectral mixture analysis and decision tree classifications, Remote Sensing of Environment, 113(2): 398-407. https://doi.org/10.1016/j.rse.2008.10.005
- Wu, C. and A.T. Murray, 2003, Estimating impervious surface distribution by spectral mixture analysis, Remote Sensing of Environment 84(4): 493-505. https://doi.org/10.1016/S0034-4257(02)00136-0
피인용 문헌
- Urbanization and Quality of Stormwater Runoff: Remote Sensing Measurements of Land Cover in an Arid City vol.30, pp.3, 2014, https://doi.org/10.7780/kjrs.2014.30.3.6
- Iterative Error Analysis 기반 분광혼합분석에 의한 초분광 영상의 표적물질 탐지 기법 vol.33, pp.5, 2014, https://doi.org/10.7780/kjrs.2017.33.5.1.8