DOI QR코드

DOI QR Code

Preparation and characterization of boron-nitrogen coordination phenol resin/SiO2 nanocomposites

  • Gao, J.G. (College of Chemistry & Environment Science, Hebei University) ;
  • Zhai, D. (College of Chemistry & Environment Science, Hebei University) ;
  • Wu, W.H. (College of Chemistry & Environment Science, Hebei University)
  • Accepted : 2013.09.24
  • Published : 2014.03.25

Abstract

The boron-nitrogen-containing phenol-formaldehyde resin (BNPFR)/$SiO_2$ nanocomposites (BNPFR/$SiO_2$) were synthesized in-situ, and structure of BNPFR/$SiO_2$ nanocomposites was characterized by FTIR, XRD and TEM. The loss modulus peak temperature $T_p$ of BNPFR/$SiO_2$ nanocomposites cured with different nano-$SiO_2$ content are determined by torsional braid analysis (TBA). The thermal degradation kinetics was investigated by thermogravimetric analysis (TGA). The results show that nano-$SiO_2$ particulate with about 50 nm diameter has a more uniformly distribution in the samples. The loss modulus peak temperature $T_p$ of BNPFR/$SiO_2$ nanocomposite is $214^{\circ}C$ when nano-$SiO_2$ content is 6 wt%. The start thermal degradation temperature $T_{di}$ is higher about $30^{\circ}C$ than pure BNPFR. The residual rate (%) of nanocomposites at $800^{\circ}C$ is above 40 % when nano-$SiO_2$ content is 9 %. The thermal degradation process is multistage decomposition and following first order.

Keywords

Acknowledgement

Supported by : Nature Science Foundation

References

  1. De, D, Adhikari, B. and De, D. (2007), "Grass fiber reinforced phenol formaldehyde resin composite: preparation, characterization and evaluation of properties of composite", Polym. Advan. Technol., 18, 72-81. https://doi.org/10.1002/pat.854
  2. Abdalla, O.M, Ludwick, A. and Mitchell, T. (2003), "Boron-modified phenolic resins for high performance applications", Polymer, 44, 7353-7359. https://doi.org/10.1016/j.polymer.2003.09.019
  3. Martin, C., Ronda, J.C. and Cadiz, V. (2006), "Development of novel flame-retardant thermosets based on boron-modified phenol-formaldehyde resins", J. Polym. Sci. Part A: Polym. Chem., 44, 3503-3512. https://doi.org/10.1002/pola.21458
  4. Liu Y.F., Gao J.G. and Zhang, R.Z. (2002), "Thermal properties and stability of boron-containing phenol-formaldehyde resin formed from paraformaldehyde", Polym. Degrad. Stabil., 77, 495-501. https://doi.org/10.1016/S0141-3910(02)00107-6
  5. Gao, J.G. and Xia, L.Y. (2004), "Structure of a boron-containing bisphenal-F formaldehyde resin and kinetics of its thermal degradation", Polym. Degrad. Stabil., 83, 71-77. https://doi.org/10.1016/S0141-3910(03)00225-8
  6. Gao, J.G., Jiang, C.J. and Su, X.H. (2010), "Synthesis and thermal properties of boron-nitrogen containing phenol formaldehyde resin/O-MMT Nanocomposite", Int. J. Polym. Mater., 59, 544-552. https://doi.org/10.1080/00914031003760659
  7. Wang, D.C., Chang, G.W. and Chen, Y. (2008), "Preparation and thermal stability of boron- containing phenolic resin/clay nanocomposites", Polym. Degrad. Stabil., 93, 125-133. https://doi.org/10.1016/j.polymdegradstab.2007.10.021
  8. Hoofel, H.B., Kiessling, H.J., Lampert, F. and Schonrogge, B. (1975), "Process for the manufacture of curable and thermositting sythesic resins containing nitrogen and boron", German Patent, 2436 360 and 2436359.
  9. Siramanont, J., Tangpasuthadol, V., Intasiri, A., Ranong, N.N. and Kiatkamjornwong, S. (2009), "Sol-gel process of alkyltriethoxysilane in latex for alkylated silica formation in natural rubber", Polym. Eng. Sci., 49, 1099-1106. https://doi.org/10.1002/pen.21363
  10. Yuvaraj, H., Shim, J.J. and Lim, K.T. (2010), "Organic-inorganic polypyrrole-surface modified $SiO_{2}$ hybrid nanocomposites: a facile and green synthetic approach", Polym. Advan. Technol. 21, 424- 429.
  11. Rund, A.Z. and Eileen, H.J. (2012), "The influence of processing route on the structuring and properties of high-density polyethylene (HDPE)/clay nanocomposites", Polym. Eng. Sci., 52, 2360-2368. https://doi.org/10.1002/pen.23189
  12. Nayak, T., Khastgir, D. and Chaki, T.K. (2012), "Influence of carbon nanofibers reinforcement on thermal and electrical behavior of polysulfone nanocomposites", Polym. Eng. Sci., 52, 2424-2434. https://doi.org/10.1002/pen.23185
  13. Kusmono, Z.A., Ishak, M., Chow, W.S., Takeichi, T., Rochmadi, (2010), "Effects of compatibilizers and testing speeds on the mechanical properties of organophilic montmorillonite filled polyamide 6/polypropylene nanocomposites", Polym. Eng. Sci. 50, 1493-1504. https://doi.org/10.1002/pen.21622
  14. Chiang, C. and Ma, C.M. (2004), "Synthesis, characterization, thermal properties and flame retardance of novel phenolic resin/silica nanocomposites", Polym. Degrad. Stabil. 83, 207-214. https://doi.org/10.1016/S0141-3910(03)00262-3
  15. Byun, H.Y., Choi, M.H. and Chung, I.J. (2001), "Synthesis and characterization of resol type phenolic resin/layered silicate nanocomposites", Chem. Mater., 13, 4111-4226.
  16. Gao, J.G., Jiang, C.J. (2008), "Organic-inorganic hybrid boron-containing phenol-formaldehyder resin/$SiO_{2}$ nanocomposites", Polym. Composit., 29, 274-279. https://doi.org/10.1002/pc.20364
  17. Zhai, D., Gao, J.G., Tian, Q. and Jiang, C.J. (2008), "Thermal degradation kinetics and thermal properties of boron-nitrogen coordination phenol-formaldehyde resin", Chinese J. Hebei Univ. Nature Sci. Edu., 28, 286-290.
  18. Shen, G., Zheng, Z, Wan, T., Cao, L., Yue, Q. and Sun, T. (1999), "Hydrolytic stability and triboligical properties of organic borate esters as lubricant additives", Chinese J. Qinghua Univ. Nature Sci. Edu., 39, 97-100.
  19. Shen, D. (1982), Application of Infrared Spectrum in Polymer, China Science Press, Beijing, P 88-100.
  20. Tu, W.R. and Wui, S.Y. (1981), "Synthesis boron-containing bisphenol-A formaldehyde resin by formalin method", Chin. Plast. Indu., 4, 16-18.
  21. Gao, J.G. (1990), "Study on the mechanism of synthesis and curing of boron-containing phenol-formaldehyde resin", Acta chimica sinica, 48, 411- 414.
  22. Gillham, J.K. (1997), The TBA torsion pendulum: a technique for characterizing the cure and properties of thermosetting systems, Polym. Int., 44, 262-276, 1997. https://doi.org/10.1002/(SICI)1097-0126(199711)44:3<262::AID-PI863>3.0.CO;2-W
  23. Brandalise, R.N., Zeni, M., Martins, J.D.N. and Forte, M.M.C. (2009), "Mechanical and dynamic mechanical properties of recycled high density polyethylene and poly (vinyl alcohol) blends", Polymer. Bulletin., 62, 33-43. https://doi.org/10.1007/s00289-008-0989-4
  24. Venditti, R.A. and Gillham, J.K. (1997), "A relationship between the glass transition temperature (Tg) and fractional conversion for thermosetting systems", J. Appl. Polym. Sci., 64, 3-14. https://doi.org/10.1002/(SICI)1097-4628(19970404)64:1<3::AID-APP1>3.0.CO;2-S
  25. Doyle, M. Hagstrand, P.O., Manson, J.A.E., Svensson, L. and Lundmark, S. (2003), Polym. Eng. Sci., 43, 297-305. https://doi.org/10.1002/pen.10025
  26. Maron, S.H. and Lando, J.B., (1974), Fundamentals of physical chemistry, Macmillan Publishing Co.: New York, 676-687.
  27. Madhusudanan, P.M., Krishnan, K. and Ninan, K.N. (1986), New approximation for the p(x) function in the evaluation of non-isothermal kinetic data, Thermochim. Acta., 97, 189-201. https://doi.org/10.1016/0040-6031(86)87019-8