DOI QR코드

DOI QR Code

Review on Biosensors for Food Safety

  • 투고 : 2014.05.12
  • 심사 : 2014.05.29
  • 발행 : 2014.06.01

초록

Background: Frequent outbreaks of foodborne illness have been increased awareness of food safety. CDC estimates that each year roughly 48 million people gets sick, 128,000 are hospitalized and 3,000 die of foodborne diseases in US. In Korea, 6,058 were hospitalized and 266 incidents were reported in 2012. It is required to develop rapid methods to identify hazard substances in food products for protecting and maintaining safety of the public health. However, conventional methods for pathogens detection and identification involve prolonged multiple enrichment steps. Purpose: This review aims to provide information on biosensors to detect pathogens in food products to enhance food safety. Results: Foodborne outbreaks continue to occur and outbreaks from various food sources have increased the need for simple, rapid, and sensitive methods to detect foodborne pathogens. Conventional methods for foodborne pathogens detection require tremendous amount of labor and time. Biosensors have drawn attentions in recent years because of their ability to detect analytes sensitively and rapidly. Principles along with their advantages and disadvantages of a variety of food safety biosensors including fiber optic biosensor, impedimetric biosensor, surface Plasmon resonance biosensor, and nano biosensor were explained. Also, future trends for the food safety biosensors were discussed.

키워드

참고문헌

  1. Anderson, G. P and C. A. Rowe-Taitt. 2000. Water quality monitoring using an automated portable fiber optic biosensor: RAPTOR. pp. 58-63. In: Environmental and Industrial Sensing: Photonic Detection and Intervention Technologies for Safe Food. November 5, Boston, MA, USA. The International Society for Optical Engineering. Bellingham, Washington, USA.
  2. Anderson, G. P., King, K. D., Cuttino, D. S., Whelan, J. P., Ligler, F. S., MacKrell, J. F., Bovais, C. S., Indyke, D. K and R. J. Foch. 1999. Biological agent detection with the use of an airborne biosensor. Field Analytical Chemistry and Technology 3:307-314. https://doi.org/10.1002/(SICI)1520-6521(1999)3:4/5<307::AID-FACT9>3.0.CO;2-M
  3. Betty, G. M., Gortemaker, J., Goverde, R. L. J., Knapen, F and A. A. Bergwerff. 2002. Surface plasmon resonance (BIACORE) detection of serum antibodies against Salmonella enteritidis and Salmonella typhimurium. Journal of Immunological Methods 266:33-44. https://doi.org/10.1016/S0022-1759(02)00102-3
  4. Bhunia, A. K., Geng, T., Lathrop, A., Valadez, A and M. T. Morgan. 2003. Optical immunosensors for detection of Listeria monocytogenes and Salmonella Enteritidis from food. pp.1-6. In: Monitoring Food Safety, Agriculture, and Plant Health. October 30, Providence, Rhode Island, USA. The International Society for Optical Engineering. Bellingham, Washington, USA.
  5. Bokken, G. C. A. M., Corbee, R. J., Knapen, F and A. A. Bergwerff. 2003. Immunochemical detection of Salmonella group B, D and E using an optical surface plasmon resonance biosensor. FEMS Microbiology Letters 222:75-82. https://doi.org/10.1016/S0378-1097(03)00250-7
  6. Bruno, J. G., Phillips, T and M. P. Carrillo. 2009. Plasticadherent DNA aptamer-magnetic bead and quantum dot sandwich assay for Campylobacter Dection. J. Fluoresc. 19:427-435. https://doi.org/10.1007/s10895-008-0429-8
  7. Chalmers, N. I., Palmer, R. J., Du-Thumm, Jr., L., Sullivan, R., Shi, W and P. E. Kolenbrander. 2007. Use of quantum dot probes to achieve single-cell resolution of human oral bacteria in biofilms. Applied and Environmental Microbiology 73(2):630-636. https://doi.org/10.1128/AEM.02164-06
  8. Chinowsky, T. M., Quinn, J. G and D. U. Bartholomew. 2003. Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor. Sensors and Actuators B 91:266-274. https://doi.org/10.1016/S0925-4005(03)00113-8
  9. Chou, C. C and Y. H. Huang. 2012. Nucleic acid sandwich hybridization assay with quantum dot-induced fluorescence resonance energy transfer for pathogen detection. Sensors 12:16660-16672. https://doi.org/10.3390/s121216660
  10. Chua, A., Yean, C. Y., Ravichandran, M., Lim, B and P. Lalitha. 2011. A rapid DNA biosensor for the molecular diagnosis of infectious disease. Biosensors and Bio-electronics 26(9):3825-3831. https://doi.org/10.1016/j.bios.2011.02.040
  11. DeMarco, D. R., Saaski, E. W., McCrae, D. A and D. V. Lim. 1999. Rapid detection of Escherichia coli O157:H7 in ground beef using a fiber-optic biosensor. Journal of Food Protection 62:711-716. https://doi.org/10.4315/0362-028X-62.7.711
  12. Donaldson, K. A., Kramer, M. F and D. V. Lim. 2004. A rapid detection method for Vaccinia virus, the surrogate for smallpox virus. Biosensors and Bioelectronics 20: 322-327. https://doi.org/10.1016/j.bios.2004.01.029
  13. Dudak, F. C and I. H. Boyaci. 2008. Enumeration of immunomagnetically captured Escherichia Coli in water samples using quantum dot-labeled antibodies. Journal of Rapid Methods & Automation in Microbiology 16: 122-131. https://doi.org/10.1111/j.1745-4581.2008.00120.x
  14. Easter, M. C and D. M. Gilbson. 1985. Rapid and automated detection of Salmonella by electrical measurements. J. Hyg-Cambridge 94:245-262. https://doi.org/10.1017/S0022172400061477
  15. Fratamico, P. M., Strobaugh, T. P., Medina, M. B and A. G. Gehring. 1998. Detection of Escherichia coli O157:H7 using a surface plasmon resonance biosensor. Biotechnology Techniques 12:571-576. https://doi.org/10.1023/A:1008872002336
  16. Geng, T., Morgan, M. T and A. K. Bhunia. 2004. Detection of low levels of Listeria monocytogenes cells by using a fiber-optic immunosensor. Applied and Environmental Microbiology 70(10):6138-6146. https://doi.org/10.1128/AEM.70.10.6138-6146.2004
  17. Gibson, D. 1987. Some modification to the media for rapid automated detection of Salmonella by conductance measurement. J. Appl. Bacteriol 63:299-304. https://doi.org/10.1111/j.1365-2672.1987.tb02706.x
  18. Gould, L. H., Walsh, K., Vieira, A., Herman, K., Williams, I., Hall, A and D. Cole. 2013. Surveillance for Foodborne Disease Outbreaks-United States, 1998-2008. Morb Mortal Wkly. 62(SS2).
  19. Guan, J. G., Miao, Y. Q and Q. J. Zhang. 2004. Review: Impedimetric biosensors. J. Biosci. Bioeng. 97:219-226. https://doi.org/10.1016/S1389-1723(04)70195-4
  20. Hahn, M. A., Tabb, J. S and T. D. Krauss. 2005. Detection of single bacterial pathogens with semiconductor quantum dots, Anal. Chem. 77:4861-4869. https://doi.org/10.1021/ac050641i
  21. Hart, R. W., Mauk, M. G., Liu, C., Qiu, X., Thompson, J. A., Chen, D., Malamud, D., Abrams, W. R and H. H. Bau. 2011. Point-of-care oral-based diagnostics. Oral Diseases 17:745-752. https://doi.org/10.1111/j.1601-0825.2011.01808.x
  22. Hoa, X. D., Kirk, A. G and M. Tabrizian. 2007. Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress. Biosensors and Bioelectronics 23:151-160. https://doi.org/10.1016/j.bios.2007.07.001
  23. Hossain, S. M. Z., Ozimok, C., Sicard, C., Aguirre, S. D., Ali, M. M., Li, Y and J. D. Brennan. 2012. Multiplexed paper test strip for quantitative bacterial detection. Anal. Bioanal. Chem. 403:1567-1576. https://doi.org/10.1007/s00216-012-5975-x
  24. http://www.cdc.gov/foodborneburden/2011-foodborne-estimates.html
  25. Kampani, K., Quann, K., Ahuja, J., Wigdahl, B., Khan, Z. K and P. Jain. 2007. A novel high throughput quantum dot-base fluorescence assay for quantitation of virus binding and attachment. Journal of Virological Methods 141:125-132. https://doi.org/10.1016/j.jviromet.2006.11.043
  26. Kim, G. H., Rand, A. G and S. V. Letcher. 2003. Impedance characterization of a piezoelectric immunosensor part II: Salmonella typhimurium detection using magnetic enhancement. Biosens. Bioelectron 18:91-99. https://doi.org/10.1016/S0956-5663(02)00143-4
  27. Kim, G., Moon, J. H and M. Morgan. 2013. Multivariate data analysis of impedimetric biosensor responses from Salmonella typhimurium. Analytical Methods 5:4074-4080. https://doi.org/10.1039/c3ay40256h
  28. Kim, G., Morgan, M., Ess, D., Hahm, B. K., Kothapalli, A and A. K. Bhunia. 2007. An automated fiber-optic biosensor based binding inhibition assay for the detection of Listeria monocytogenes. Food Sci. Biotechnol 16(3): 337-342.
  29. Koubova, V., Brynda, E., Karasova, L., Skvor, J., Homola, J., Dostalek, J., Tobiska, P and J. Rosicky. 2001. Detection of foodborne pathogens using surface plasmon resonance biosensors. Sensors and Actuators B 74:100-105. https://doi.org/10.1016/S0925-4005(00)00717-6
  30. Kramer, M. F and D. V. Lim. 2004. A rapid and automated fiber optic-based biosensor assay for the detection of Salmonella in Spent irrigation water used in the sprouting of sprout seeds. Journal of Food Protection 67:46-52. https://doi.org/10.4315/0362-028X-67.1.46
  31. Kuang, H., Cui, G., Chen, X., Yin, H., Yong, Q., Xu, L., Peng, C., Wang, L and C. Xu. 2013. A one-step homogeneous sandwich immunosensor for Salmonella Detectio Based on magnetic nanoparticles (MNPs) and quantum dots (QDs). Int. J. Mol. Sci. 14:8603-8610. https://doi.org/10.3390/ijms14048603
  32. Lai, E. P. C and J. M. Yeung. 2001. Is biosensor a viable method for food allergen detection?. Analytica Chimica Acta 444:97-102. https://doi.org/10.1016/S0003-2670(01)01166-7
  33. Lazcka, O., Campo, F. J. D and F. X. Munoz. 2007. Pathogen detection: A perspective of traditional methods and biosensors. Biosensors and Bioelectronics 22:1205-1217. https://doi.org/10.1016/j.bios.2006.06.036
  34. Lee, S., Kim, G and J. Moon. 2013. Performance improvement of the one-dot lateral flow immunoassay for aflatoxin B1 by using a smartphone-based reading system. Sensors 13:5109-5116. https://doi.org/10.3390/s130405109
  35. Liandris, E., Gazouli, M., Andreadou, M., Sechi, L. A., Rosu, V and J. Ikonomopoulos. 2011. Detection of pathogenic mycobacteria based on functionalized quantum dots coupled with immunomagnetic separation. PLoS ONE 6(5):e20026. https://doi.org/10.1371/journal.pone.0020026
  36. Lindholm-Sethson, B., Nystrom, J., Malmsten, M., Ringstad, L., Nelson, A and P. Geladi. 2010. Electrochemical impedance spectroscopy in label-free biosensor applications: multivariate data analysis for an objective interpretation, Anal. Bioanal. Chem. 398:2341-2349. https://doi.org/10.1007/s00216-010-4027-7
  37. Marazuela, M. D and M. C. Moreno-Bondi. 2002. Fiberoptic biosensors-an overview. Anal. Bioanal. Chem. 372:664-682. https://doi.org/10.1007/s00216-002-1235-9
  38. Medina, M. B. 2004. Binding interaction studies of the immobilized Salmonella typhimurium with extracellular matrix and muscle proteins, and polysaccharides. International Journal of Food Microbiology 93:63-72. https://doi.org/10.1016/j.ijfoodmicro.2003.10.008
  39. Naimushin, A. N., Soelberg, S. D., Nguyen, D. K., Dunlap, L., Bartholomew, D., Elkind, J., Melendez, J and C. E. Furlong. 2002. Detection of Staphylococcus aureus enterotoxin B at femtomolar levels with a minature integrated two-channel surface plasmon resonance (SPR) sensor. Biosensors and Bioelectronics 17:573-584. https://doi.org/10.1016/S0956-5663(02)00014-3
  40. Oh, B. K., Kim, Y. K., Park, K. W., Lee, W. H and J. W. Choi. 2004. Surface plasmon resonance immunosensor for the detection of Salmonella typhimurium. Biosensors and Bioelectronics. 19:1497-1504. https://doi.org/10.1016/j.bios.2003.12.009
  41. Posthuma-Trumpie, G. A., Korf, J and A. Amerongen. 2009. Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal. Chem. 393:569-582. https://doi.org/10.1007/s00216-008-2287-2
  42. Radke, S. A and E. C. Alocilja. 2005. A high density microelectrode array biosensor for detection of E. coli O157:H7. Biosens. Bioelectron. 20:1662-1667. https://doi.org/10.1016/j.bios.2004.07.021
  43. Spangler, B. D., Wilkinson, E. A., Murphy, J. T and B. J. Tyler. 2001. Comparison of the Spreeta surface plasmon resonance sensor and a quartz crystal microbalance for detection of Escherichia coli heatlabile enterotoxin. Analytica Chimica Acta 444:149-161. https://doi.org/10.1016/S0003-2670(01)01156-4
  44. Su, L., Jia, W., Hou, C and Y. Lei. 2011. Microbial biosensors: A review. Biosensors and Bioelectronics 26:1788-1799. https://doi.org/10.1016/j.bios.2010.09.005
  45. Su, W., Lin, M., Lee, H., Cho, M., Choe, W. S and Y. Lee. 2012. Determination of endotoxin through an aptamer-based impedance biosensor, Biosens. Bioelectron. 32:32-36. https://doi.org/10.1016/j.bios.2011.11.009
  46. Su, X and Y. Li. 2004. Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli. O157:H7. Anal. Chem. 76:4806-4810. https://doi.org/10.1021/ac049442+
  47. Tallury, P., Malhotra, A., Byrne, L. M and S. Santra. 2010. Nanobioimaging and sensing of infectious diseases. Advanced Drug Delivery Reviews 62(4-5):424-437. https://doi.org/10.1016/j.addr.2009.11.014
  48. Tims, T. B., Dickey, S. S., Demarco, D. R and D. V. Lim. 2001. Detection of low levels of Listeria monocytogenes within 20 hours using an evanescent wave biosensor. American Clinical Laboratory 20(8):28-29.
  49. Varshney, M and Y. B. Li. 2007. Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples. Biosens. Bioelectron. 22:2408-2414. https://doi.org/10.1016/j.bios.2006.08.030
  50. Wang, D. B., Tian, B., Zhang, Z. P., Deng, J. Y., Cui, Z. Q., Yang, R. F., Wang, X. Y., Wei, H. P and X. E. Zhang. 2013. Rapid detection of Bacillus anthracis spores using a superparamagnetic lateral-flow immunological detection system. Biosens Bioelectron. 42:661-667. https://doi.org/10.1016/j.bios.2012.10.088
  51. Wang, H., Li, Y and M. Slavik. 2007. Rapid detection of Listeria monocytogenes using quantum dots and nanobeads-based optical biosensor. Journal of Rapid Methods & Automation in Microbiology 15:67-76. https://doi.org/10.1111/j.1745-4581.2007.00075.x
  52. Wang, L., Wu, C. S., Fan, X and A. Mustapha. 2012. Detection of Escherichia coli O157:H7 and Salmonella in ground beef by a bead-free quantum dot-facilitated isolation method. International Journal of Food Microbiology 156(1):83-87. https://doi.org/10.1016/j.ijfoodmicro.2012.03.003
  53. Yang, L and Y. Li. 2006. Simultaneous detection of Escherichia coli O157:H7 and Salmonella Typhimurium using quantum dots as fluorescence labels. Analyst 131:394-401. https://doi.org/10.1039/b510888h
  54. Yang, L., Ruan, C and Y. Li. 2003. Detection of viable Salmonella typhimurium by impedance measurement of electrode capacitance and medium resistance. Biosens. Bioelectron. 19:495-502. https://doi.org/10.1016/S0956-5663(03)00229-X
  55. Yang, L., Li, Y., Griffis, C. L and M. G. Johnson. 2004. Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium. Biosens. Bioelectron. 19:1139-1147. https://doi.org/10.1016/j.bios.2003.10.009
  56. Zhao, Y., Ye, M., Chao, Q., Jia, N., Ge, Y and H. Shen. 2009. Simultaneous detection of multifood-borne pathogenic bacteria based on functionalized quantum dots coupled with immunomagnetic separation in food samples. Journal of Agricultural and Food Chemistry 57:517-524. https://doi.org/10.1021/jf802817y
  57. Zhu, H., Sikora, U and A. Ozcan. 2012. Quantum dot enabled detection of Escherichia coli using a cell-phone. Analyst 137:2541-2544. https://doi.org/10.1039/c2an35071h
  58. Zhu, L., Ang, S and W. T. Liu. 2004. Quantum dots as a novel immunofluorescent detection system for Cryptosporidium parvum and Giardia lamblia. Applied and Environmental Microbiology. 70(1):597-598. https://doi.org/10.1128/AEM.70.1.597-598.2004