참고문헌
- Friedenstein, A. J., K. V. Petrakova, A. I. Kurolesova, and G. P. Frolova. 1968. Heterotopic of bone marrow; Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6: 230-247. https://doi.org/10.1097/00007890-196803000-00009
- Bernardo, M. E., F. Locatelli, and W. E. Fibbe. 2009. Mesenchymal stromal cells. Ann. N. Y. Acad. Sci. 1176: 101-117 https://doi.org/10.1111/j.1749-6632.2009.04607.x
- Yi, T. and S. U. Song. 2012. Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications. Arch. Pharm. Res. 35: 213-221. https://doi.org/10.1007/s12272-012-0202-z
- Yoo, H. S., T. Yi, Y. K. Cho, W. C. Kim, S. U. Song, and M. S. Jeon. 2013. Mesenchymal stem cell lines isolated by different isolation methods show variations in the regulation of graft-versus-host disease. Immune Netw. 13: 133-140. https://doi.org/10.4110/in.2013.13.4.133
- Anderson, P., L. Souza-Moreira, M. Morell, M. Caro, F. O'Valle, E. Gonzalez-Rey, and M. Delgado. 2013. Adiposederived mesenchymal stromal cells induce immunomodulatory macrophages which protect from experimental colitis and sepsis. Gut 62: 1131-1141. https://doi.org/10.1136/gutjnl-2012-302152
- Jung, K. H., S. U. Song, T. Yi, M. S. Jeon, S. W. Hong, H. M. Zheng, H. S. Lee, M. J. Choi, D. H. Lee, and S. S. Hong. 2011. Human bone marrow-derived clonal mesenchymal stem cells inhibit inflammation and reduce acute pancreatitis in rats. Gastroenterology 140: 998-1008. https://doi.org/10.1053/j.gastro.2010.11.047
- Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143-147. https://doi.org/10.1126/science.284.5411.143
- Wang, G., B. A. Bunnell, R. G. Painter, B. C. Quiniones, S. Tom, N. A. Lanson, Jr., J. L. Spees, D. Bertucci, A. Peister, D. J. Weiss, V. G. Valentine, D. J. Prockop, and J. K. Kolls. 2005. Adult stem cells from bone marrow stroma differentiate into airway epithelial cells: potential therapy for cystic fibrosis. Proc. Natl. Acad. Sci. USA 102: 186-191. https://doi.org/10.1073/pnas.0406266102
- Tao, X. R., W. L. Li, J. Su, C. X. Jin, X. M. Wang, J. X.Li, J. K. Hu, Z. H. Xiang, J. T. Lau, and Y. P. Hu. 2009. Clonal mesenchymal stem cells derived from human bone marrow can differentiate into hepatocyte-like cells in injured livers of SCID mice. J. Cell. Biochem. 108: 693-704. https://doi.org/10.1002/jcb.22306
- Hofstetter, C. P., E. J. Schwarz, D. Hess, J. Widenfalk, A. El Manira, D. J. Prockop, and L. Olson. 2002. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc. Natl. Acad. Sci. USA 99: 2199-2204. https://doi.org/10.1073/pnas.042678299
- Woodbury, D., E. J. Schwarz, D. J. Prockop, and I. B. Black. 2000. Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 61: 364-370. https://doi.org/10.1002/1097-4547(20000815)61:4<364::AID-JNR2>3.0.CO;2-C
- Deng, W., M. Obrocka, I. Fischer, and D. J. Prockop. 2001. In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem. Biophys. Res. Commun. 282: 148-152. https://doi.org/10.1006/bbrc.2001.4570
- Neuhuber, B., G. Gallo, L. Howard, L. Kostura, A. Mackay, and I. Fischer. 2004. Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J. Neurosci. Res. 77: 192-204. https://doi.org/10.1002/jnr.20147
- Lu, P., A. Blesch, and M. H. Tuszynski. 2004. Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? J. Neurosci. Res. 77: 174-191. https://doi.org/10.1002/jnr.20148
- Mareschi, K., M. Novara, D. Rustichelli, I. Ferrero, D. Guido, E. Carbone, E. Medico, E. Madon, A. Vercelli, and F. Fagioli. 2006. Neural differentiation of human mesenchymal stem cells: Evidence for expression of neural markers and eag K+ channel types. Exp. Hematol. 34: 1563-1572. https://doi.org/10.1016/j.exphem.2006.06.020
- Kim, S., O. Honmou, K. Kato, T. Nonaka, K. Houkin, H. Hamada, and J. D. Kocsis. 2006. Neural differentiation potential of peripheral blood- and bone-marrow-derived precursor cells. Brain Res. 1123: 27-33. https://doi.org/10.1016/j.brainres.2006.09.044
- Ankrum, J. and J. M. Karp. 2010. Mesenchymal stem cell therapy: two steps forward, one step back. Trends Mol. Med. 16: 203-209. https://doi.org/10.1016/j.molmed.2010.02.005
- Einstein, O., N. Fainstein, I. Vaknin, R. Mizrachi-Kol, E. Reihartz, N. Grigoriadis, I. Lavon, M. Baniyash, H. Lassmann, and T. Ben-Hur. 2007. Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppression. Ann. Neurol. 61: 209-218. https://doi.org/10.1002/ana.21033
- Ben-Hur, T. 2008. Immunomodulation by neural stem cells. J. Neurol. Sci. 265: 102-104. https://doi.org/10.1016/j.jns.2007.05.007
- Rickard, D. J., M. Kassem, T. E. Hefferan, G. Sarkar, T. C. Spelsberg, and B. L. Riggs. 1996. Isolation and characterization of osteoblast precursor cells from human bone marrow. J. Bone Miner. Res. 11: 312-324.
- Song, S. U., C. S. Kim, S. P. Yoon, S. K. Kim, M. H. Lee, J. S. Kang, G. S. Choi, S. H. Moon, M. S. Choi, Y. K. Cho, and B. K. Son. 2008. Variations of clonal marrow stem cell lines established from human bone marrow in surface epitopes, differentiation potential, gene expression, and cytokine secretion. Stem Cells Dev. 17: 451-461. https://doi.org/10.1089/scd.2007.0167
- Tondreau, T., M. Dejeneffe, N. Meuleman, B. Stamatopoulos, A. Delforge, P. Martiat, D. Bron, and L. Lagneaux. 2008. Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells. BMC Genomics 9: 166-176. https://doi.org/10.1186/1471-2164-9-166
- Shakhbazov, A. V., N. V. Goncharova, S. M. Kosmacheva, N. A. Kartel, and M. P. Potanev. 2009. Plasticity of human msesnchymal stem cell phenotype and expression profile under neurogenic conditions. Cell Technol. Biol. Med. 2: 513-516
- Yamaguchi, S., S. Kuroda, H. Kobayashi, H. Shichinohe, S. Yano, K. Hida, K. Shinpo, S. Kikuchi, and Y. Iwasaki. 2006. The effects of neuronal induction on gene expression profile in bone marrow stromal cells (BMSC)-a preliminary study using microarray analysis. Brain Res. 1087: 15-27. https://doi.org/10.1016/j.brainres.2006.02.127
- Reik, W., W. Dean, and J. Walter. 2001. Epigenetic reprogramming in mammalian development. Science 293: 1089- 1093. https://doi.org/10.1126/science.1063443
- Jaenisch, R. and A. Bird. 2003. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33 Suppl: 245-254. https://doi.org/10.1038/ng1089
- Larsen, F., G. Gundersen, R. Lopez, and H. Prydz. 1992. CpG islands as gene markers in the human genome. Genomics 13: 1095-1107. https://doi.org/10.1016/0888-7543(92)90024-M
- Bird, A. P. and A. P. Wolffe. 1999. Methylation-induced repression-- belts, braces, and chromatin. Cell 99: 451-454. https://doi.org/10.1016/S0092-8674(00)81532-9
- Lee, J. E., S. F. Wu, L. M. Goering, and R. I. Dorsky. 2006. Canonical Wnt signaling through Lef1 is required for hypothalamic neurogenesis. Development 133: 4451-4461. https://doi.org/10.1242/dev.02613
- Gulacsi, A. A. and S. A. Anderson. 2008. Beta-catenin-mediated Wnt signaling regulates neurogenesis in the ventral telencephalon. Nat. Neurosci. 11: 1383-1391. https://doi.org/10.1038/nn.2226
- Toledo, E. M., M. Colombres, and N. C. Inestrosa. 2008. Wnt signaling in neuroprotection and stem cell differentiation. Prog. Neurobiol. 86: 281-296. https://doi.org/10.1016/j.pneurobio.2008.08.001
- Kuwabara, T., J. Hsieh, A. Muotri, G. Yeo, M. Warashina, D. C. Lie, L. Moore, K. Nakashima, M. Asashima, and F. H. Gage. 2009. Wnt-mediated activation of NeuroD1 and retroelements during adult neurogenesis. Nat. Neurosci. 12: 1097- 1105. https://doi.org/10.1038/nn.2360
- Garcia-Morales, C., C. H. Liu, M. Abu-Elmagd, M. K. Hajihosseini, and G. N. Wheeler. 2009. Frizzled-10 promotes sensory neuron development in Xenopus embryos. Dev. Biol. 335: 143-155. https://doi.org/10.1016/j.ydbio.2009.08.021
- Ardley, H. C. and P. A. Robinson. 2005. E3 ubiquitin ligases, Essays Biochem. 41: 15-30. https://doi.org/10.1042/EB0410015
- Deshaies, R. J. and C. A. Joazeiro. 2009. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78: 399-434. https://doi.org/10.1146/annurev.biochem.78.101807.093809
- Li, W., M. H. Bengtson, A. Ulbrich, A. Matsuda, V. A. Reddy, A. Orth, S. K. Chanda, S. Batalov, and C. A. Joazeiro. 2008. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLoS One 3: e1487. https://doi.org/10.1371/journal.pone.0001487
- Rotin, D. and S. Kumar. 2009. Physiological functions of the HECT family of ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 10: 398-409. https://doi.org/10.1038/nrm2690
- Schwamborn, J. C., M. Muller, A. H. Becker, and A. W. Puschel. 2007. Ubiquitination of the GTPase Rap1B by the ubiquitin ligase Smurf2 is required for the establishment of neuronal polarity. EMBO J. 26: 1410-1422. https://doi.org/10.1038/sj.emboj.7601580
- Bryan, B., Y. Cai, K. Wrighton, G. Wu, X. H. Feng, and M. Liu. 2005. Ubiquitination of RhoA by Smurf1 promotes neurite outgrowth. FEBS Lett. 579: 1015-1019. https://doi.org/10.1016/j.febslet.2004.12.074
- Prockop, D. J. and J. Y. Oh. 2012. Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol. Ther. 20: 14-20. https://doi.org/10.1038/mt.2011.211
- Lee, R. H., A. A. Pulin, M. J. Seo, D. J. Kota, J. Ylostalo, B. L. Larson, L. Semprun-Prieto, P. Delafontaine, and D. J. Prockop. 2009. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5: 54-63. https://doi.org/10.1016/j.stem.2009.05.003
- Oh, J. Y., G. W. Roddy, H. Choi, R. H. Lee, J. H. Ylostalo, R. H. Rosa, Jr., and D. J. Prockop. 2010. Antiinflammatory protein TSG-6 reduces inflammatory damage to the cornea following chemical and mechanical injury. Proc. Natl. Acad. Sci. USA 107: 16875-16880. https://doi.org/10.1073/pnas.1012451107
-
Choi, H., R. H. Lee, N. Bazhanov, J. Y. Oh, and D. J. Prockop. 2011. Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-
${\kappa}B$ signaling in resident macrophages. Blood 118: 330-338. https://doi.org/10.1182/blood-2010-12-327353 - Dripps, D. J., B. J. Brandhuber, R. C. Thompson, and S. P. Eisenberg. 1991. Interleukin-1 (IL-1) receptor antagonist binds to the 80-kDa IL-1 receptor but does not initiate IL-1 signal transduction. J. Biol. Chem. 266: 10331-10336.
- Dinarello, C. A., A. Simon, and J. W. van der Meer. 2012. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat. Rev. Drug Discov. 11: 633-652. https://doi.org/10.1038/nrd3800
피인용 문헌
- Enhanced survival of human mesenchymal stem cells following co-delivery with glucagon-like peptide-1 analogue in fibrin gel vol.45, pp.2, 2014, https://doi.org/10.1007/s40005-014-0156-x
- Genome‐wide DNA‐methylation profiles in human bone marrow mesenchymal stem cells on titanium surfaces vol.127, pp.3, 2014, https://doi.org/10.1111/eos.12607