DOI QR코드

DOI QR Code

Molecular Characterization of Neurally Differentiated Human Bone Marrow-derived Clonal Mesenchymal Stem Cells

  • Yi, TacGhee (Translational Research Center, Inha University School of Medicine) ;
  • Lee, Hyun-Joo (Drug Development Program, Department of Medicine, Inha University School of Medicine) ;
  • Cho, Yun-Kyoung (HomeoTherapy Co. Ltd.) ;
  • Jeon, Myung-Shin (Translational Research Center, Inha University School of Medicine) ;
  • Song, Sun U. (Translational Research Center, Inha University School of Medicine)
  • Received : 2013.12.10
  • Accepted : 2014.02.04
  • Published : 2014.02.28

Abstract

Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent, with the ability to differentiate into different cell types. Additionally, the immunomodulatory activity of MSCs can downregulate inflammatory responses. The use of MSCs to repair injured tissues and treat inflammation, including in neuroimmune diseases, has been extensively explored. Although MSCs have emerged as a promising resource for the treatment of neuroimmune diseases, attempts to define the molecular properties of MSCs have been limited by the heterogeneity of MSC populations. We recently developed a new method, the subfractionation culturing method, to isolate homogeneous human clonal MSCs (hcMSCs). The hcMSCs were able to differentiate into fat, cartilage, bone, neuroglia, and liver cell types. In this study, to better understand the properties of neurally differentiated MSCs, gene expression in highly homogeneous hcMSCs was analyzed. Neural differentiation of hcMSCs was induced for 14 days. Thereafter, RNA and genomic DNA was isolated and subjected to microarray analysis and DNA methylation array analysis, respectively. We correlated the transcriptome of hcMSCs during neural differentiation with the DNA methylation status. Here, we describe and discuss the gene expression profile of neurally differentiated hcMSCs. These findings will expand our understanding of the molecular properties of MSCs and contribute to the development of cell therapy for neuroimmune diseases.

Keywords

References

  1. Friedenstein, A. J., K. V. Petrakova, A. I. Kurolesova, and G. P. Frolova. 1968. Heterotopic of bone marrow; Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6: 230-247. https://doi.org/10.1097/00007890-196803000-00009
  2. Bernardo, M. E., F. Locatelli, and W. E. Fibbe. 2009. Mesenchymal stromal cells. Ann. N. Y. Acad. Sci. 1176: 101-117 https://doi.org/10.1111/j.1749-6632.2009.04607.x
  3. Yi, T. and S. U. Song. 2012. Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications. Arch. Pharm. Res. 35: 213-221. https://doi.org/10.1007/s12272-012-0202-z
  4. Yoo, H. S., T. Yi, Y. K. Cho, W. C. Kim, S. U. Song, and M. S. Jeon. 2013. Mesenchymal stem cell lines isolated by different isolation methods show variations in the regulation of graft-versus-host disease. Immune Netw. 13: 133-140. https://doi.org/10.4110/in.2013.13.4.133
  5. Anderson, P., L. Souza-Moreira, M. Morell, M. Caro, F. O'Valle, E. Gonzalez-Rey, and M. Delgado. 2013. Adiposederived mesenchymal stromal cells induce immunomodulatory macrophages which protect from experimental colitis and sepsis. Gut 62: 1131-1141. https://doi.org/10.1136/gutjnl-2012-302152
  6. Jung, K. H., S. U. Song, T. Yi, M. S. Jeon, S. W. Hong, H. M. Zheng, H. S. Lee, M. J. Choi, D. H. Lee, and S. S. Hong. 2011. Human bone marrow-derived clonal mesenchymal stem cells inhibit inflammation and reduce acute pancreatitis in rats. Gastroenterology 140: 998-1008. https://doi.org/10.1053/j.gastro.2010.11.047
  7. Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143-147. https://doi.org/10.1126/science.284.5411.143
  8. Wang, G., B. A. Bunnell, R. G. Painter, B. C. Quiniones, S. Tom, N. A. Lanson, Jr., J. L. Spees, D. Bertucci, A. Peister, D. J. Weiss, V. G. Valentine, D. J. Prockop, and J. K. Kolls. 2005. Adult stem cells from bone marrow stroma differentiate into airway epithelial cells: potential therapy for cystic fibrosis. Proc. Natl. Acad. Sci. USA 102: 186-191. https://doi.org/10.1073/pnas.0406266102
  9. Tao, X. R., W. L. Li, J. Su, C. X. Jin, X. M. Wang, J. X.Li, J. K. Hu, Z. H. Xiang, J. T. Lau, and Y. P. Hu. 2009. Clonal mesenchymal stem cells derived from human bone marrow can differentiate into hepatocyte-like cells in injured livers of SCID mice. J. Cell. Biochem. 108: 693-704. https://doi.org/10.1002/jcb.22306
  10. Hofstetter, C. P., E. J. Schwarz, D. Hess, J. Widenfalk, A. El Manira, D. J. Prockop, and L. Olson. 2002. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc. Natl. Acad. Sci. USA 99: 2199-2204. https://doi.org/10.1073/pnas.042678299
  11. Woodbury, D., E. J. Schwarz, D. J. Prockop, and I. B. Black. 2000. Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 61: 364-370. https://doi.org/10.1002/1097-4547(20000815)61:4<364::AID-JNR2>3.0.CO;2-C
  12. Deng, W., M. Obrocka, I. Fischer, and D. J. Prockop. 2001. In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem. Biophys. Res. Commun. 282: 148-152. https://doi.org/10.1006/bbrc.2001.4570
  13. Neuhuber, B., G. Gallo, L. Howard, L. Kostura, A. Mackay, and I. Fischer. 2004. Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J. Neurosci. Res. 77: 192-204. https://doi.org/10.1002/jnr.20147
  14. Lu, P., A. Blesch, and M. H. Tuszynski. 2004. Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? J. Neurosci. Res. 77: 174-191. https://doi.org/10.1002/jnr.20148
  15. Mareschi, K., M. Novara, D. Rustichelli, I. Ferrero, D. Guido, E. Carbone, E. Medico, E. Madon, A. Vercelli, and F. Fagioli. 2006. Neural differentiation of human mesenchymal stem cells: Evidence for expression of neural markers and eag K+ channel types. Exp. Hematol. 34: 1563-1572. https://doi.org/10.1016/j.exphem.2006.06.020
  16. Kim, S., O. Honmou, K. Kato, T. Nonaka, K. Houkin, H. Hamada, and J. D. Kocsis. 2006. Neural differentiation potential of peripheral blood- and bone-marrow-derived precursor cells. Brain Res. 1123: 27-33. https://doi.org/10.1016/j.brainres.2006.09.044
  17. Ankrum, J. and J. M. Karp. 2010. Mesenchymal stem cell therapy: two steps forward, one step back. Trends Mol. Med. 16: 203-209. https://doi.org/10.1016/j.molmed.2010.02.005
  18. Einstein, O., N. Fainstein, I. Vaknin, R. Mizrachi-Kol, E. Reihartz, N. Grigoriadis, I. Lavon, M. Baniyash, H. Lassmann, and T. Ben-Hur. 2007. Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppression. Ann. Neurol. 61: 209-218. https://doi.org/10.1002/ana.21033
  19. Ben-Hur, T. 2008. Immunomodulation by neural stem cells. J. Neurol. Sci. 265: 102-104. https://doi.org/10.1016/j.jns.2007.05.007
  20. Rickard, D. J., M. Kassem, T. E. Hefferan, G. Sarkar, T. C. Spelsberg, and B. L. Riggs. 1996. Isolation and characterization of osteoblast precursor cells from human bone marrow. J. Bone Miner. Res. 11: 312-324.
  21. Song, S. U., C. S. Kim, S. P. Yoon, S. K. Kim, M. H. Lee, J. S. Kang, G. S. Choi, S. H. Moon, M. S. Choi, Y. K. Cho, and B. K. Son. 2008. Variations of clonal marrow stem cell lines established from human bone marrow in surface epitopes, differentiation potential, gene expression, and cytokine secretion. Stem Cells Dev. 17: 451-461. https://doi.org/10.1089/scd.2007.0167
  22. Tondreau, T., M. Dejeneffe, N. Meuleman, B. Stamatopoulos, A. Delforge, P. Martiat, D. Bron, and L. Lagneaux. 2008. Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells. BMC Genomics 9: 166-176. https://doi.org/10.1186/1471-2164-9-166
  23. Shakhbazov, A. V., N. V. Goncharova, S. M. Kosmacheva, N. A. Kartel, and M. P. Potanev. 2009. Plasticity of human msesnchymal stem cell phenotype and expression profile under neurogenic conditions. Cell Technol. Biol. Med. 2: 513-516
  24. Yamaguchi, S., S. Kuroda, H. Kobayashi, H. Shichinohe, S. Yano, K. Hida, K. Shinpo, S. Kikuchi, and Y. Iwasaki. 2006. The effects of neuronal induction on gene expression profile in bone marrow stromal cells (BMSC)-a preliminary study using microarray analysis. Brain Res. 1087: 15-27. https://doi.org/10.1016/j.brainres.2006.02.127
  25. Reik, W., W. Dean, and J. Walter. 2001. Epigenetic reprogramming in mammalian development. Science 293: 1089- 1093. https://doi.org/10.1126/science.1063443
  26. Jaenisch, R. and A. Bird. 2003. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33 Suppl: 245-254. https://doi.org/10.1038/ng1089
  27. Larsen, F., G. Gundersen, R. Lopez, and H. Prydz. 1992. CpG islands as gene markers in the human genome. Genomics 13: 1095-1107. https://doi.org/10.1016/0888-7543(92)90024-M
  28. Bird, A. P. and A. P. Wolffe. 1999. Methylation-induced repression-- belts, braces, and chromatin. Cell 99: 451-454. https://doi.org/10.1016/S0092-8674(00)81532-9
  29. Lee, J. E., S. F. Wu, L. M. Goering, and R. I. Dorsky. 2006. Canonical Wnt signaling through Lef1 is required for hypothalamic neurogenesis. Development 133: 4451-4461. https://doi.org/10.1242/dev.02613
  30. Gulacsi, A. A. and S. A. Anderson. 2008. Beta-catenin-mediated Wnt signaling regulates neurogenesis in the ventral telencephalon. Nat. Neurosci. 11: 1383-1391. https://doi.org/10.1038/nn.2226
  31. Toledo, E. M., M. Colombres, and N. C. Inestrosa. 2008. Wnt signaling in neuroprotection and stem cell differentiation. Prog. Neurobiol. 86: 281-296. https://doi.org/10.1016/j.pneurobio.2008.08.001
  32. Kuwabara, T., J. Hsieh, A. Muotri, G. Yeo, M. Warashina, D. C. Lie, L. Moore, K. Nakashima, M. Asashima, and F. H. Gage. 2009. Wnt-mediated activation of NeuroD1 and retroelements during adult neurogenesis. Nat. Neurosci. 12: 1097- 1105. https://doi.org/10.1038/nn.2360
  33. Garcia-Morales, C., C. H. Liu, M. Abu-Elmagd, M. K. Hajihosseini, and G. N. Wheeler. 2009. Frizzled-10 promotes sensory neuron development in Xenopus embryos. Dev. Biol. 335: 143-155. https://doi.org/10.1016/j.ydbio.2009.08.021
  34. Ardley, H. C. and P. A. Robinson. 2005. E3 ubiquitin ligases, Essays Biochem. 41: 15-30. https://doi.org/10.1042/EB0410015
  35. Deshaies, R. J. and C. A. Joazeiro. 2009. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78: 399-434. https://doi.org/10.1146/annurev.biochem.78.101807.093809
  36. Li, W., M. H. Bengtson, A. Ulbrich, A. Matsuda, V. A. Reddy, A. Orth, S. K. Chanda, S. Batalov, and C. A. Joazeiro. 2008. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLoS One 3: e1487. https://doi.org/10.1371/journal.pone.0001487
  37. Rotin, D. and S. Kumar. 2009. Physiological functions of the HECT family of ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 10: 398-409. https://doi.org/10.1038/nrm2690
  38. Schwamborn, J. C., M. Muller, A. H. Becker, and A. W. Puschel. 2007. Ubiquitination of the GTPase Rap1B by the ubiquitin ligase Smurf2 is required for the establishment of neuronal polarity. EMBO J. 26: 1410-1422. https://doi.org/10.1038/sj.emboj.7601580
  39. Bryan, B., Y. Cai, K. Wrighton, G. Wu, X. H. Feng, and M. Liu. 2005. Ubiquitination of RhoA by Smurf1 promotes neurite outgrowth. FEBS Lett. 579: 1015-1019. https://doi.org/10.1016/j.febslet.2004.12.074
  40. Prockop, D. J. and J. Y. Oh. 2012. Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol. Ther. 20: 14-20. https://doi.org/10.1038/mt.2011.211
  41. Lee, R. H., A. A. Pulin, M. J. Seo, D. J. Kota, J. Ylostalo, B. L. Larson, L. Semprun-Prieto, P. Delafontaine, and D. J. Prockop. 2009. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5: 54-63. https://doi.org/10.1016/j.stem.2009.05.003
  42. Oh, J. Y., G. W. Roddy, H. Choi, R. H. Lee, J. H. Ylostalo, R. H. Rosa, Jr., and D. J. Prockop. 2010. Antiinflammatory protein TSG-6 reduces inflammatory damage to the cornea following chemical and mechanical injury. Proc. Natl. Acad. Sci. USA 107: 16875-16880. https://doi.org/10.1073/pnas.1012451107
  43. Choi, H., R. H. Lee, N. Bazhanov, J. Y. Oh, and D. J. Prockop. 2011. Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-${\kappa}B$ signaling in resident macrophages. Blood 118: 330-338. https://doi.org/10.1182/blood-2010-12-327353
  44. Dripps, D. J., B. J. Brandhuber, R. C. Thompson, and S. P. Eisenberg. 1991. Interleukin-1 (IL-1) receptor antagonist binds to the 80-kDa IL-1 receptor but does not initiate IL-1 signal transduction. J. Biol. Chem. 266: 10331-10336.
  45. Dinarello, C. A., A. Simon, and J. W. van der Meer. 2012. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat. Rev. Drug Discov. 11: 633-652. https://doi.org/10.1038/nrd3800

Cited by

  1. Enhanced survival of human mesenchymal stem cells following co-delivery with glucagon-like peptide-1 analogue in fibrin gel vol.45, pp.2, 2014, https://doi.org/10.1007/s40005-014-0156-x
  2. Genome‐wide DNA‐methylation profiles in human bone marrow mesenchymal stem cells on titanium surfaces vol.127, pp.3, 2014, https://doi.org/10.1111/eos.12607