디지털 홀로그램 (CGH) 생성 기술

  • 발행 : 2014.01.31

초록

본고에서는 수학적 모델을 기반으로 디지털 홀로그램 생성하는 기술에 대해 기술한다. 디지털 홀로그램 생성은 먼저 스칼라 회절에 대한 수학적 모델을 이용하여 생성이 가능하며, 위상 분포를 갖는 디지털 홀로그램 생성 또한 다양한 방법에 의해 실현이 가능하다. 디지털 홀로그램 생성 분야에서 주요 이슈 중에 하나는 높은 계산복잡도를 갖는 디지털 홀로그램 생성을 가속화하는 방법이다. 본고에서는 이와 같이 디지털 홀로그램 생성에 관한 기본 방법 및 가속화 방법 등을 나타낸다.

키워드

참고문헌

  1. Marc Levoy. Light fields and computational imaging. Computer, 39(8):46. 55, 2006.
  2. James D Trolinger. Optical holography: Principles, techniques and applications (2nd edn). Measurement Science and Technology, 8(3), 1997.
  3. A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, "Aspects of hologram calculation for video frames," Journal of Optics A: Pure and Applied 36 Optics 10, 035302+, 2008.
  4. R. Gerchberg and W. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35, 237.246 (1972).
  5. F. Wyrowski and O. Bryngdahl, "Iterative fourier-transform algorithm applied to computer holography," J. Opt. Soc. Am. A 5, 1058.1065 (1988). https://doi.org/10.1364/JOSAA.5.001058
  6. J. Fienup, "Iterative method applied to image reconstruction and to computer. generated holograms," Optical Engineering 19, 297 (1980).
  7. M. Seldowitz, J. Allebach, and D. Sweeney, "Synthesis of digital holograms by direct binary search," Applied Optics 26, 2788.2798 (1987). https://doi.org/10.1364/AO.26.002788
  8. B. K. Jennison and J. P. Allebach, "Analysis of the leakage from computergenerated holograms synthesized by direct binary search," J. Opt. Soc. Am. A 6, 234.243 (1989). https://doi.org/10.1364/JOSAA.6.000234
  9. B. K. Jennison, J. P. Allebach, and D. W. Sweeney, "Efficient design of directbinary - search computergenerated holograms," J. Opt. Soc. Am. A 8, 652.660, 1991. https://doi.org/10.1364/JOSAA.8.000652
  10. T. Dresel, M. Beyerlein, and J. Schwider, "Design of computer-generated beamshaping holograms by iterative finite-element mesh adaption," Appl. Opt. 35, 6865.6874 (1996). https://doi.org/10.1364/AO.35.006865
  11. F. Wyrowski, "Iterative quantization of digital amplitude holograms," Appl. Opt.28, 3864.3870(1989). https://doi.org/10.1364/AO.28.003864
  12. 49. T. Haist, M. Schonleber, and H. J. Tiziani, "Computer-generated holograms from 3d-objects written on twisted-nematic liquid crystal displays," Optics Communications 140, 299 . 308 (1997). https://doi.org/10.1016/S0030-4018(97)00192-2
  13. G. WhyteandJ . Courtial," Experimental demonstration of holographic three dimensional light shaping using a gerchberg-saxton algorithm," New Journal of Physics 7, 117 (2005). https://doi.org/10.1088/1367-2630/7/1/117
  14. G. Sinclair, J. Leach, P. Jordan, G. Gibson, E. Yao, Z. J. Laczik, M. J. Padgett, and J. Courtial, "Interactive application in holographic optical tweezers of a multiplane gerchberg-saxton algorithm for threedimensional light shaping," Optics Express 12, 1665.1670 (2004). https://doi.org/10.1364/OPEX.12.001665
  15. J. Xia and H. Yin, "Three-dimensional light modulation using phase-only spatial light modulator," Optical Engineering 48, 020502 (2009). https://doi.org/10.1117/1.3076211
  16. D. Engstroem, A. Frank, J. Backsten, M. Goksoer, and J. Bengtsson, "Grid-free 3d multiple spot generation with an efficient single-plane fft-based algorithm," Opt. Express 17, 9989.10000 (2009). https://doi.org/10.1364/OE.17.009989
  17. J.-Y. Zhuang and O. K. Ersoy, "Fast decimationin- frequency direct binary search algorithms for synthesis of computer-generated holograms," J. Opt. Soc. Am. A 11, 135.143 (1994). https://doi.org/10.1364/JOSAA.11.000135
  18. V. Boutenko and R. Chevallier, "Second order direct binary search algorithm for the synthesis of computer-generated holograms," Optics Communications 125, 38 43 . 47 (1996). https://doi.org/10.1016/0030-4018(95)00731-8
  19. G. Dueck and T. Scheuer, "Threshold accepting: A general purpose optimization algorithm appearing superior to simulated annealing," Journal of Computational Physics 90, 161 . 175 (1990). https://doi.org/10.1016/0021-9991(90)90201-B
  20. S. Kirkpatrick, C. Gelatt, and M. Vecchi, "Optimization by simualted annealing," Science 220, 671 (1983). https://doi.org/10.1126/science.220.4598.671
  21. M. Clark and R. Smith, "A direct-search method for the computer design of holograms," Optics Communications 124, 150 . 164 (1996). https://doi.org/10.1016/0030-4018(95)00633-8
  22. L. Ingber, "Very fast simulated re-annealing," Tech. rep.
  23. T. Ito, N. Masuda, K. Yoshimura, A. Shiraki, T. Shimobaba, and T. Sugie, "Special.purpose computer horn-5 for a real-time electroholography," Optics Express 13, 1932.1932 (2005). 11a2.
  24. Y.-H. Seo, H.-J. Cho, and D.-W. Kim, "Highperformance cgh processor for realtime digital holography," Biomedical Optics p. JMA9 (2008).
  25. T. Ito and T. Shimobaba, "One-unit system for electroholography by use of a special-purpose computational chip with a high-resolution liquidcrystal display toward a three-dimensional television," Optics Express 12, 2004 (2004). 11a2. 39
  26. N. Tanabe, Y. Ichihashi, H. Nakayama, N. Masuda, and T. Ito, "Speed-up of hologram generation using clearspeed accelerator board," Computer Physics Communications 180, 1870 . 1873 (2009). https://doi.org/10.1016/j.cpc.2009.06.001
  27. T. Haist, M. Reicherter, M. Wu, and L. Seifert, "How to use your graphics board for the computation of holograms," Computing in Science & Engineering (2005).
  28. M. Reicherter, T. Haist, S. Zwick, A. Burla, L. Seifert, and W. Osten, "Fast hologram computation and aberration control for holographic tweezers," (SPIE, 2005), vol. 5930, pp. 59301Y+.
  29. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, "Real-time digital holographic microscopy using the graphic processing unit," Opt. Express 16, 11776.11781 (2008). https://doi.org/10.1364/OE.16.011776
  30. F. Yaras, H. Kang, and L. Onural, "Real-time multiple slm color holographic display using multiple gpu acceleration," (Optical Society of America, 2009), OSA Technical Digest (CD), pp. DWA4+.
  31. M. Montes-Usategui, E. Pleguezuelos, J. Andilla, and E. Martn-Badosa, "Fast generation of holographic optical tweezers by random mask encoding of fourier components," Opt. Express 14, 2101.2107 (2006). https://doi.org/10.1364/OE.14.002101
  32. F. Belloni and S. Monneret, "Quadrant kinoform: an approach to multiplane dynamic three-dimensional holographic trapping," Appl. Opt. 46, 4587.4593 (2007). https://doi.org/10.1364/AO.46.004587
  33. J. Amako, H. Miura, and T. Sonehara, "Speckle-noise reduction on kinoform reconstruction using a phaseonly spatial light modulator," Appl. Opt. 34, 3165. 3171 (1995). https://doi.org/10.1364/AO.34.003165
  34. L. Golan and S. Shoham, "Speckle elimination using shift-averaging in high-rate holographic projection," Opt. Express 17, 1330.1339 (2009). https://doi.org/10.1364/OE.17.001330
  35. D. O' Brien , T . Wilkinson , and R. Mears, "Programmable cghs with large space bandwith product," in "4th international Conference on Holographic Systems, Components and Applications, IEEE Proceedings," vol. 379 (1993), vol. 379.
  36. J. P. Allebach, N. C. Gallagher, and B. Liu, "Aliasing error in digital holography," Appl. Opt. 15, 2183.2188 (1976). https://doi.org/10.1364/AO.15.002183
  37. R. Brauer, F. Wyrowski, and O. Bryngdahl, "Diffusers in digital holography," J. Opt. Soc. Am. A 8, 572.578 (1991). https://doi.org/10.1364/JOSAA.8.000572
  38. H. Aagedal, M. Schmid, T. Beth, S. Teiwes, and F.Wyrowski, "Theory of speckles in diffractive optics and its application to beam shaping," Journal of Modern Optics pp. 1409.1421 (1996).
  39. T. Shimobaba, S. Hishinuma, and T. Ito. Specialpurpose computer for holography HORN-4 with recurrence algorithm. Computer Physics Communications, 148(2):160 . 170, 2002. https://doi.org/10.1016/S0010-4655(02)00473-3
  40. Takashi YABE, Tomoyoshi ITO, and Masashi OKAZAKI. Holography machine HORN-1 for computer-aided retrieval of virtual threedimensional image. Japanese journal of applied physics. Pt. 2, Letters, 32:L1359.L1361, 1993. https://doi.org/10.1143/JJAP.32.L1359
  41. Y. Ichihashi, T. Ito, H. Nakayama, N. Masuda, A. Shiraki, and T. Shimobaba. Development of specialpurpose computer HORN-6 for holography. 3D Image Conference 2008, 2008.
  42. TomoyoshiIto , Nobuyuki Masuda, Kotaro Yoshimura, Atsushi Shiraki, Tomoyoshi Shimobaba, and Takashige Sugie. Special-purpose computer HORN-5 for a real-time electroholography. Opt. Express, 13(6):1923.1932, 2005. https://doi.org/10.1364/OPEX.13.001923
  43. Shimobaba T., , Masuda N, Sugie T, Hosono S, Tsukui S, and Ito T. Specialpurpose computer for holography HORN-3 with pld technology. Computer Physics Communications, 130, July 2000.
  44. T. Ito, T. Yabe, M. Okazaki, and M. Yanagi. Specialpurpose computer HORN-1 for reconstruction of virtual image in three dimensions. Comp. Phys. Commun., 82(2-3):104.110, 1994. https://doi.org/10.1016/0010-4655(94)90159-7
  45. T. Ito, H. Eldeib, K. Yoshida, S. Takahashi, T. Yabe, and T. Kunugi. Special-purpose computer for holography HORN-2. Comp. Phys. Commun., 93:13.20, 1996. https://doi.org/10.1016/0010-4655(95)00125-5
  46. Tomohisa Hamano and Hiroshi Yoshikawa. Imagetype CGH by means of e-beam printing. In SPIE, Practical Holography XII, volume 3293, pages 2.14, 1998.
  47. Takeshi Yamaguchi, Gen Okabe, and Hiroshi Yoshikawa. Real-time image plane full-color and full-parallax holographic video display system. Optical Engineering, 46(12):125801, 2007. https://doi.org/10.1117/1.2823485
  48. Takeshi Yamaguchi and Hiroshi Yoshikawa. Real time calculation for holographic video display. In SPIE, Practical Holography XX: Materials and Applications, volume 6136, page 61360T, 2006.
  49. Toyohiko Yatagai. Stereoscopic approach to 3-D display using computergenerated holograms. Appl. Opt., 15(11):2722.2729, 1976. https://doi.org/10.1364/AO.15.002722
  50. Hoonjong Kang, Takeshi Yamaguchi, Hiroshi Yoshikawa, Seung-Cheol Kim, and Eun-Soo Kim. Acceleration method of computing a compensated phaseadded stereogram on a graphic processing unit. Appl. Opt., 47(31):5784. 5789, 2008. https://doi.org/10.1364/AO.47.005784
  51. Hoonjong Kang, Takeshi Yamaguchi, and Hiroshi Yoshikawa. Accurate phase-added stereogram to improve the coherent stereogram. Appl. Opt., 47(19):D44.D54, 2008. https://doi.org/10.1364/AO.47.000D44
  52. Hoonjong Kang, Tomohiko Fujii, Takeshi Yamaguchi, and Hiroshi Yoshikawa. Compensated phase-added stereogram for real-time holographic display. Optical Engineering, 46(9):095802, 2007. https://doi.org/10.1117/1.2784463
  53. H. Yoshikawa J. Tamai. Faster computation of subsampled coherent stereogram (in japanese). In The Journal of the Institute of Television Engineers of Japan, volume 50, pages 1612.1615, 1996. https://doi.org/10.3169/itej1978.50.1612
  54. Masahiro Yamaguchi, Hideshi Hoshino, Toshio Honda, and Nagaaki Ohyama. Phase-added stereogram: calculation of hologram using computer graphics technique. In Practical Holography VII: Imaging and Materials, volume 1914, pages 25.31. SPIE, 1993.
  55. Hiroshi Yoshikawa and Hirokazu Kameyama. Integral holography. In Practical Holography IX, volume 2406, pages 226.234. SPIE, 1995.
  56. H. Kang. Quality improvements of the coherent holographic stereogram for natural 3D display and its applications. In PhD. Thesis, Nihon University, 2008.
  57. Hoonjong Kang, Fahri Yaras, Levent Onural, and Hiroshi Yoshikawa. Realtime fringe pattern generation with high quality. In Digital Holography and Three-Dimensional Imaging, page DTuB7. Optical Society of America, 2009.
  58. Fahri Yaras, Hoonjong Kang, and Levent Onural. Real-time multiple SLM color holographic display using multiple GPU acceleration. In Digital Holography and Three-Dimensional Imaging, page DWA4. Optical Society of America, 2009.
  59. H. Kang, F. Yaras, and L. Onural. Quality comparison and acceleration for digital hologram generation method based on segmentation. In 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, IEEE, 2009.
  60. F. Yaras, H. Kang, and L. Onural. Realtime color holographic video display system. In 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, IEEE, 2009.