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Abstract. In this paper we provide a rigorous proof for the fact that

there are exactly 8 connected Alexander quandles of order 25 by com-
bining properties of fixed point free automorphisms of finite abelian 2-

groups and the classification of conjugacy classes of GL(5, 2). Further-

more we verify that six of the eight associated Alexander modules are
simple, whereas the other two are semisimple.

1. Introduction

In knot theory, quandles were considered by G. Wraith and J. Conway in
1959 as a generalization of a group with the binary operation given by conju-
gation, and further developed by D. Joice [4] in 1980 for invariants of knots.
In particular, connected finite quandles receive attentions for generalization of
the classical Fox’s n-colorings of knots [14].

A family of connected finite quandles were already investigated in the other
area of mathematics with terms such as distributive (both left and right) or
left-distributive quasigroups which include all connected finite Alexander quan-
dles, a major class of finite quandles in knot theory. For instance, Kepka and
Nemec [5] classified distributive quasigroups of order ≤ 15. In particular, they
explicitly described 44 nontrivial ones which agree with all connected finite
Alexander quandles on the Ohtsuki’s list [10]. Indeed, it is not difficult to see
that a connected finite Alexander quandle bears another name, i.e., a medial
idempotent quasigroup by using the Toyoda representation theorem [15] (the
fundamental theorem in quasigroup theory).
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Beginning with Nelson [9], the classification of connected finite Alexander
quandles has been further carried out by Murrillo and Nelson [7] for order 24,
by Grãna [1] and Hou [3] for prime power orders p2 and p3, p4, respectively.

As of 2013 the classification of connected finite Alexander quadles is ex-
tended up to order 25 by using a computer in [11]. In this paper we provide a
rigorous proof for the fact that there are exactly 8 connected Alexander quan-
dles of order 25 by combining properties of fixed point free automorphisms of
finite abelian 2-groups and the classification of conjugacy classes of GL(5, 2).
Furthermore, we verify that six among the eight associated Alexander modules
are simple, whereas the other two are semisimple.

2. Preliminaries

In this section we begin with definition of the Alexander module. Let A be
a finite abelian group and let Aut(A) be the automorphism group of A. Then
φ in Aut(A) induces an action of Λ = Z[t, t−1], the ring of Laurent polynomials
with integer coefficients on A by extending the action

t±1 a = φ±1(a) for every a ∈ A
to that of f(t) in Λ. In this way we have a Λ-module Aφ, being referred to as
an Alexander module.

We here have a well known result.

Lemma 2.1. Let φ, ψ be automorphisms of a finite abelian group A. Then
(1) Aφ is isomorphic to Aψ if and only if φ is conjugate to ψ in Aut(A),

equivalently, there exists π in Aut(A) such that π φπ−1 = ψ;
(2) If A is of odd order abelian group, then A is fixed point free.

Our interests in Alexander modules come from knot theory. Indeed there
we have a quandle defined on a set Q with a binary operation · such that for
all x, y, z in Q,

1) x · x = x,
2) a left multiplication Lx : Q→ Q defined by Lx(y) = x ·y is a permutation

on Q for each x in Q,
3) (x · y) · z = (x · z) · (y · z).
A quandle is said to be connected if and only if for any pair y, z in Q there

exists x in Q such that Lx(y) = z. Let φ be an automorphism of finite abelian
group A with the operation written additively. Then defining

a ·φ b = φ(a) + (1− φ)(b)

for all a, b in A, we have so called a finite Alexader quandle denoted by (A, ·φ).
An automorphism φ of a group G is said to be fixed point free if φ fixes only

the identity element of G. A finite group G is said to be fixed point free if G
has a fixed point free automorphism.

The following basic facts are well known.
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Theorem 2.2. ([9]) Let φ and ψ be automorphisms of a finite abelian group
A. Then (A, ·φ) is isomorphic to (A, ·ψ) if and only if (1− t)Aφ is isomorphic
to (1− t)Aψ as Λ-module.

Lemma 2.3. Let φ be an automorphism of a finite abelian group A. The
following satements are equivalent:

(1) φ is fixed point free;
(2) I − φ ∈ Aut(A);
(3) (1− t)Aφ = Aφ;
(4) (A, ·φ) is connected.

Corollary 2.4. Let φ and ψ be fixed point free automorphisms of a finite
abelian group A. Then the followings are equivalent:

(1) (A, ·φ) is isomorphic to (A, ·ψ) (as quandles);
(2) Aφ is isomorphic to Aψ (as Λ-modules);
(3) φ is conjugate to ψ in Aut(A).

Thus the problem of classifying connected Alexander quandles up to isomor-
phism is equivalent to that of classifying fixed point free automorphisms of a
finite abelian group up to conjugacy.

Here we have well known properties of fixed point free finite abelian groups.

Lemma 2.5. If A is an abelian group of odd order, then A is fixed point free.

Lemma 2.6. If A is an elementary abelian group of order 2r, then A is fixed
point free if and only if r ≥ 2.

Lemma 2.7. If both A and B are fixed point free, so is A×B. The converse
is also true if both A and B are characteristic subgroups of A×B.

Corollary 2.8. If A is an abelian group of order 4k + 2, then A is not fixed
point free.

Proof. By the classification of finite abelian groups, A is a direct product of
a group of order 2 and a group of order 2k + 1. Since both are characteristic
subgroups of A, the assertion follows from Lemma 2.6 and Lemma 2.7. �

Corollary 2.9. There are no connected Alexander quandles of order 4k + 2.

For a finite abelian p-group A, the omega subgroups are defined to be the
series of subgroups of A, indexed by the natural numbers as follows:

Ωi(A) = {a ∈ A | ap
i

= 1}
Since the Frattini subgroup Φ(A) of A is a characteristic subgroup of A, we may
associate with each automorphism of A its induced action on the factor group
A/Φ(A), and we have the natural homomorphism λ : Aut(A)→ Aut(A/Φ(A)).

Let A(pm, n) be the direct product of n-copies of the cyclic group of order
pm; equivalently,

A(pm, n) ∼= Zpm × · · · × Zpm (with n factors )
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In particular, A(p, n) denotes the elementary abelian p-group of order pn.

Lemma 2.10. For A = A(pm, n),
(1) the homomorphism λ : Aut(A)→ Aut(A/Φ(A)) ∼= GL(n, p) is surjective;
(2) φ in Aut(A) is fixed point free if and only if λ(φ) in Aut(A/Φ(A)) is

fixed point free.

Theorem 2.11. (Gross [2]) Let A be an ableian 2-group isomorphic with
A(2m1 , n1) × A(2m2 , n2) × · · · × A(2mr , nr) where 0 < m1 < m2 < · · · < mr.
Then A is fixed point free if and only if ni ≥ 2 for all i = 1, 2, ..., r.

Proof. The ‘if’ part follows from Lemma 2.6, Lemma 2.7 and Lemma 2.10.
For ‘only if’ part, we simply denote Ai = A(2mi , ni), Hi = Ωmi

(A)Φ(A)
for i = 1, 2, ..., r and H0 = Φ(A). We recall Ai ∼= Zpmi × · · · × Zpmi (with ni
factors) for each i = 1, 2, ..., r, and m1 < m2 < · · · < mr. Then

1) Ωmi(A) ∼= Ωmi(A1)× · · · × Ωmi(Ar), Φ(A) ∼= Φ(A1)× · · · × Φ(Ar);
2) Ωmi

(Aj) = Pj ⊇ Φ(Aj) for j ≤ i, Ωmi
(Aj) ⊆ Φ(Aj) for j ≥ i+ 1.

Thus for each i = 1, 2, ..., r,
3) Hi

∼= A1 × · · · ×Ai−1 ×Ai × Φ(Ai+1)× · · · × Φ(Ar);
4) Hi−1

∼= A1 × · · · ×Ai−1 × Φ(Ai)× Φ(Ai+1)× · · · × Φ(Ar).
Consequently,

Hi/Hi−1
∼= Ai/Φ(Ai) ∼= Zp × · · · × Zp (with ni summands)

for all i = 1, 2, ..., r. Thus we have a proof of ‘only if’ part from Lemma 2.6. �

Corollary 2.12. For an abelian group A of order 22, 23 or 25, A is fixed point
free if and only if A is elementary abelian.

Proof. By the classification of finite abelian 2-groups, there are exactly follow-
ing types of 2-groups with given orders:

Z22 , Z2
2 of order 22,

Z23 , Z22 × Z2, Z3
2 of order 23,

Z24 × Z2, Z23 × Z22 , Z23 × Z2
2, Z2

22 × Z2, Z22 × Z3
2, Z5

2 of order 25.
Thus if A are not elementary abelian, then A are not fixed point free by The-
orem 2.11. �

3. Main results

The problem of classifying connected Alexander quandles of order 25 is boiled
down to that of classfying conjugacy classes of fixed point free automorphisms
of the elementary abelian group A(2, 5) of order 25.

Note that the automorphism group of the elementary abelian group of order
pn is isomorphic to GL(n, p), the general linear group of dimension n over the
field Zp. Each element g of GL(n, p) affords a Zp[t]-module via the action on
the vector space V = Znp defined by t v = g(v) for every v in V . The module is
denoted by Vg, or V in short. We say that a Zp[t]-module is singular if t v = 0
for some non-zero vector v in V ; otherwise, nonsingular.
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It is well known that the conjugacy classes in GL(n, p) are therefore in one to
one correspondence with the isomorphism classes of nonsingular Zp[t]-modules
of dimension n.

We now enumerate the conjugacy classes in GL(n, p) in terms of the non-
singular Zp[t]-modules of dimension n up to isomorphism; the presentation is
largely based on the treatment of [6].

A finite sequence λ = (λ1, λ2, ..., λk) of positive integers such that λ1 ≤ λ2 ≤
· · · ≤ λk is said to be a partition of the integer

∑k
i=1 λi, which is denoted by

[λ]. It is also convenient to consider the partition of zero as the sequence (0).
We denote the set of partitions of nonnegative integers by P .

From the structure theorem for finitely generated modules over a principal
ideal domain, we see that every nonsingular Zp[t]-modules V of dimension n is
a direct sum of cyclic modules of the form Zp[t] /(fm) where m is a positive
integer and f is an irreducible monic polynomial in Zp[t].

Let Γ be the set of all irreducible monic polynomials in Zp[t] with t being
excluded. It follows that each f in Γ maps to a partition λ(f) such that∑
f∈Γ [λ(f)] deg(f) = n, which yields a function from Γ into P .

On the other hand, for each f in Γ and a partition λ = (λ1, λ2, ..., λk) in P ,
we can associate the Zp[t]-modules

Wf,λ =

k⊕
i=1

Zp[t]
/(
fλi
)

Note that dimZp Wf, λ =
∑k
i=1 λi deg(f) = [λ] deg(f).

Now taking mutually distinct irreducible polynomials f in Γ and a partition
λ(f) so that

dimZp

⊕
f∈Γ

Wf, λ(f)

 =
∑
f∈Γ

[λ(f)] deg(f) = n,

we have a nonsingular Zp[t]-module V =
⊕

f∈Γ Wf, λ(f) of dimension n. It is

also well known that the function from Γ into P which maps f to λ(f) is an
invariant of the isomorphism class of V .

Summing up the above discussion, we have:

Lemma 3.1. Let P be the set of partitions of nonnegative integers. There
exists a one-to-one correspondence between the conjugacy classes of GL(n, p)
and the functions from Γ into P which map each f ∈ Γ to a partition λ(f) ∈ P
such that

∑
f∈Γ [λ(f)] deg(f) = n.

Based upon Lemma 3.1, we can enumerate a rational canonical form corre-
sponding to the decomposition: V =

⊕
f∈Γ Wf, λ(f) with

Wf, λ(f) =

k⊕
i=1

Zp[t]
/(
fλi
)
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where λ(f) = (λ1, λ2, ..., λk) is a partition for each f in Γ such that∑
f∈Γ

[λ(f)] deg(f) = n.

Example 1. The rational canonical form
b 1

b 1
b 1

b
c


with b, c in Z×p has the minimal polynomial (t− b)4(t− c) corresponding to the

module Zp[t]
/

(t− b)4 ⊕ Zp[t]/(t− c).

Example 2. The rational canonical form
0 1 0 1
−b0 −b1 0 0

0 1 0 1
−b0 −b1 0 0

0 1
−b0 −b1


has the minimal polynomial (t2 + b1t + b0)3 corresponding to the module
Zp[t]/(t2 + b1t+ b0)3 for an irreducible polynomial t2 + b1t+ b0 in Zp[t].

To count the number of irreducible polynomials of degree d in Zp[t], we need
the following well known result.

Lemma 3.2. Let Ip(d) is the number of irreducible polynomials of degree d in
Zp[t]. Then

pn =
∑
d|n

d Ip(d).

Example 3. If n is a prime then Ip(n) = pn−p
n , since pn = Ip(1)+nIp(n). The

followings are a list of irreducible polynomials over Z2 with degree 2, 3 and 5.

t2 + t+ 1, t3 + t2 + 1, t3 + t+ 1,
t5 + t4 + t3 + t2 + 1, t5 + t3 + t2 + t+ 1, t5 + t3 + 1,
t5 + t4 + t3 + t+ 1, t5 + t2 + 1, t5 + t4 + t2 + t+ 1.

Example 4. (1) Ip(4) = p4−p2
4 , since

p4 = Ip(1) + 2Ip(2) + 4Ip(4) = p+ (p2 − p) + 4Ip(4).
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(2) Ip(6) = p6−p3−p2+p
6 , since

p6 = Ip(1) + 2Ip(2) + 3Ip(3) + 6Ip(6) = p+ (p2 − p) + (p3 − p) + 6Ip(6).

Lemma 3.3. Among irreducible polynomial in Zp[t] with degree n, the number

of ways of choosing r polynomials allowing duplicate choices is

(
Ip(n) + r − 1

r

)
.

Theorem 3.4. There are exactly eight connected Alexander quandles of order
25. The associated Alexander modules are isomorphic to one of the following
modules:

Z2[t]
/

(t3 + t+ 1) ⊕ Z2[t]
/

(t2 + t+ 1) , Z2[t]
/

(t5 + t4 + t3 + t2 + 1) ,
Z2[t]

/
(t3 + t2 + 1) ⊕ Z2[t]

/
(t2 + t+ 1) , Z2[t]

/
(t5 + t3 + t2 + t+ 1),

Z2[t]
/

(t5 + t3 + 1) , Z2[t]
/

(t5 + t4 + t3 + t+ 1) ,
Z2[t]

/
(t5 + t2 + 1) , Z2[t]

/
(t5 + t4 + t2 + t+ 1).

Proof. In Table 1, we have a list of rational canonical forms of GL(5, p). The
completeness of enumeration can be checked by comparing the total number of
rational canonical forms with c5 = p5 − p2 − p+ 1, given explicitly in [6]. One
immediately realizes that for p = 2 rational canonical forms with linear factors
in their minimal polynomials must have nontrivial fixed points because those
linear factors are t + 1. Thus there are only two types of rational canonical
forms with no linear factors:

A =


0 1 0
0 0 1
−b0 −b1 −b2

0 1
−c0 −c1


where t3 + b2t

2 + b1t+ b0, t
2 + b1t+ b0 is irreducible in Z2[t].

B =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
−b0 −b1 −b2 −b3 −b4


where t5 + b4t

4 + b3t
3 + b2t

2 + b1t+ b0 is irreducible in Z2[t].
From the two rational canonical forms of type A we have the semisimple

modules, and from the six rational canonical forms of type B we have the simple
modules. Thus we have the assertion of the theorem from Corollary 2.12. �

Remark. In a website [11] maintained by M. Saito, the above 8 modules are
described by polynomials of degree 5. Indeed we have following factorizations
over Z2:

t5 + t4 + 1 = (t3 + t+ 1)(t2 + t+ 1),
t5 + t+ 1 = (t3 + t2 + 1)(t2 + t+ 1).
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Thus we see that

C[32, 16] = Z2[t]/(t5 + t4 + 1) ∼= Z2[t]/(t3 + t+ 1)⊕ Z2[t]/(t2 + t+ 1),
C[32, 17] = Z2[t]/(t5 + t+ 1) ∼= Z2[t]/(t3 + t2 + 1)⊕ Z2[t]/(t2 + t+ 1).
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