References
- Cheng XL, Ning T, Xu CQ, et al (2011). Haplotype analysis of CTLA4 gene and risk of esophageal squamous cell carcinoma in Anyang area of China. Hepatogastroenterology, 58, 432-7.
- Gresner P, Gromadzinska J, Polanska K, et al (2012). Genetic variability of Xrcc3 and Rad51 modulates the risk of head and neck cancer. Gene, 504, 166-74. https://doi.org/10.1016/j.gene.2012.05.030
- Humar B, Graziano F, Cascinu S, et al (2002). Association of CDH1 haplotypes with susceptibility to sporadic diffuse gastric cancer. Oncogene, 21, 8192-5. https://doi.org/10.1038/sj.onc.1205921
- Khanna KK, Jackson SP (2001). DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet, 27, 247-54. https://doi.org/10.1038/85798
- Kollarova H, Machova L, Horakova D, Janoutova G, Janout V (2007). Epidemiology of esophageal cancer--an overview article. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 151, 17-20. https://doi.org/10.5507/bp.2007.003
- Krupa R, Sliwinski T, Wisniewska-Jarosinska M, et al (2011). Polymorphisms in RAD51, XRCC2 and XRCC3 gene of the homologous recombination repair in colorectalcancer-a case control study. Mol Biol Rep, 38, 2849-54. https://doi.org/10.1007/s11033-010-0430-6
- Lim DS, Hasty P (1996). A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol Cell Biol, 16, 7133-43.
- Lu J, Wang LE, Xiong P, et al (2007). 172G>T variant in the 5' untranslated region of DNA repair gene RAD51 reduces risk of squamous cell carcinoma of the head and neck and interacts with a P53 codon 72 variant. Carcinogenesis, 28, 988-94.
- Nogueira A, Catarino R, Faustino I, et al (2012). Role of the RAD51 G172T polymorphism in the clinical outcome of cervical cancer patients under concomitant chemoradiotherapy. Gene, 504, 279-83. https://doi.org/10.1016/j.gene.2012.05.037
- O'Driscoll M, Jeggo PA (2006). The role of double-strand break repair - insights from human genetics. Nat Rev Genet, 7, 45-54.
- Paques F, Haber JE (1999). Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 63, 349-404.
- Parkin DM, Bray F, Ferlay J, Pisani P (2005). Global cancer statistics, 2002. CA Cancer J Clin, 55, 74-108. https://doi.org/10.3322/canjclin.55.2.74
- Pasaje CF, Kim JH, Park BL, et al (2011). Lack of association of RAD51 genetic variations with hepatitis B virus clearance and occurrence of hepatocellular carcinoma in a Korean population. J Med Virol, 83, 1892-9. https://doi.org/10.1002/jmv.22122
- Poplawski T, Arabski M, Kozirowska D, et al (2006). DNA damage and repair in gastric cancer--a correlation with the hOGG1 and RAD51 genes polymorphisms. Mutat Res, 601, 83-91. https://doi.org/10.1016/j.mrfmmm.2006.06.002
- Roberts-Thomson IC, Butler WJ (2005). Polymorphism and squamous cell cancer of the esophagus. J Gastroenterol Hepatol, 20, 486-7. https://doi.org/10.1111/j.1440-1746.2005.03821.x
- Romanowicz-Makowska H, Smolarz B, Zadrozny M, et al (2011). Single nucleotide polymorphisms in the homologous recombination repair genes and breast cancer risk in Polish women. Tohoku J Exp Med, 224, 201-8. https://doi.org/10.1620/tjem.224.201
- Schild D, Wiese C (2010). Overexpression of RAD51 suppresses recombination defects: a possible mechanism to reverse genomic instability. Nucleic Acids Res, 38, 1061-1070. https://doi.org/10.1093/nar/gkp1063
- Shrivastav M, De Haro LP, Nickoloff JA (2008). Regulation of DNA double-strand break repair pathway choice. Cell Res, 18, 134-47. https://doi.org/10.1038/cr.2007.111
- Shrivastav M, De Haro LP, Nickoloff JA (2008). Regulation of DNA double-strand break repair pathway choice. Cell Res, 18, 134-47. https://doi.org/10.1038/cr.2007.111
- Shrivastav M, De Haro LP, Nickoloff JA (2008). Regulation of DNA double-strand break repair pathway choice. Cell Res, 18, 134-47. https://doi.org/10.1038/cr.2007.111
- Sliwinski T, Walczak A, Przybylowska K, et al (2010). Polymorphisms of the XRCC3 C722T and the RAD51 G135C genes and the risk of head and neck cancer in a Polish population. Exp Mol Pathol, 89, 358-66. https://doi.org/10.1016/j.yexmp.2010.08.005
- Sonoda E, Sasaki MS, Buerstedde JM, et al (1998). Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J, 17, 598-608. https://doi.org/10.1093/emboj/17.2.598
- Thacker J (2005). The RAD51 gene family, genetic instability and cancer. Cancer Lett, 219, 125-35. https://doi.org/10.1016/j.canlet.2004.08.018
- Tsuzuki T, Fujii Y, Sakumi K, et al (1996). Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc Natl Acad Sci USA, 93, 6236-40. https://doi.org/10.1073/pnas.93.13.6236
- West SC (2003). Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol, 4, 435-45. https://doi.org/10.1038/nrm1127
Cited by
- Upregulation of STK15 in Esophageal Squamous Cell Carcinomas in a Mongolian Population vol.15, pp.15, 2014, https://doi.org/10.7314/APJCP.2014.15.15.6021
- Correlation between Selected XRCC2, XRCC3 and RAD51 Gene Polymorphisms and Primary Breast Cancer in Women in Pakistan vol.15, pp.23, 2015, https://doi.org/10.7314/APJCP.2014.15.23.10225
- Association of RAD 51 135 G/C, 172 G/T and XRCC3 Thr241Met Gene Polymorphisms with Increased Risk of Head and Neck Cancer vol.15, pp.23, 2015, https://doi.org/10.7314/APJCP.2014.15.23.10457
- in oral and oropharyngeal carcinomas pp.1354523X, 2019, https://doi.org/10.1111/odi.12943