DOI QR코드

DOI QR Code

Development and Lab-scale Plant Study of Coagulation Sedimentation Module using Cyclone

선회류를 이용한 응집침전모듈의 개발 및 실증 연구

  • Moon, Jinyoung (Environmental Research Institute, Inha University) ;
  • Cho, Young-Gun (School of Urban and Environmental Engineering, Incheon National University) ;
  • Song, Seung-Jun (School of Urban and Environmental Engineering, Incheon National University) ;
  • Kim, Jin-Han (School of Urban and Environmental Engineering, Incheon National University)
  • 문진영 (인하대학교 환경연구소) ;
  • 조영근 (인천대학교 도시환경공학부) ;
  • 송승준 (인천대학교 도시환경공학부) ;
  • 김진한 (인천대학교 도시환경공학부)
  • Received : 2014.01.24
  • Accepted : 2014.05.08
  • Published : 2014.05.31

Abstract

The purpose of this study is small scale coagulation module is developed and demonstrated through a lab-scale test. Recent as a sewage treatment rate increases, have heightened the interest in the necessity on the nonpoint source and developing a small processing unit has been increased. Coagulation sedimentation module in this study is additional growth of floc through swirling in the outside zone, reduction of microstructure floc number and the internal settling zone through vertical/level flow complex sedimentation method after the coagulation process precipitation method as an effective high separation efficiency can be divided was also assessed. Coagulation sedimentation module can increase the load factor was 4.4 times compared to conventional clarifier base on the same volume and surface area through vertical/level flow. In this study, this process was selected formation and maintenance of swirling and uniform flow distribution in the internal settling zone as an important design factor, to derive its FLUENT was used to characteristics of the flow model. Through the simulation of swirling, influent velocity, dimensions of external basin, hopper depth of bottom cone was determined and through analysis of velocity distribution, flow distribution detailed specifications are derived like as diameter and number of effluent hole. Lab-scale($120{\ell}/hr$) test results, influent of 300~800 NTU to less than 10 NTU without polymer feeding was able to operate in the 20minutes retention time(surface loading rate $37.3m^3/m^2$-day), and through analysis FLUENT the possibility of using design parameters were derived.

본 연구의 목적은 소규모 응집침전모듈의 개발 및 lab-scale 테스트를 통한 실증이다. 최근 하수처리율이 높아짐에 따라 비점오염원 관리에 대한 관심이 높아지고 있어 소규모 처리장치 개발의 필요성이 증대되고 있다. 본 연구의 응집침전모듈은 응집공정 이후 외부 영역에서 선회류를 통한 플럭(floc)의 추가 성장 및 미세 플럭 수의 감소, 내부 침전 영역에서 수직 수평류 복합침전방식을 통한 침전효율 증대로 효과적인 고액분리가 가능토록 하였다. 응집침전모듈은 수직 수평류 복합침전 방식을 통해 재래식침전조에 비해 같은 체적에서 침전면적 및 표면부하율을 4.4배 증가시킬 수 있었다. 본 연구에서 외부 및 내부 침전 영역에서의 선회류 형성 유지와 내부 침전영역에서의 균등한 유량분배를 본 공정의 중요한 설계인자로 선정하였고, 이의 도출을 위해 유체유동해석 모델인 FLUENT를 이용하였다. 선회류 유동경향 모사를 통해 유입속도, 외부조의 규격, 하부콘호퍼 깊이 등을 결정하였고 속도분포 및 유량분배 해석을 통해 유출공 직경과 개수, 유출홀 직경 등 내부 침전영역의 세부 규격을 도출하였다. $60{\ell}/hr$규모의 파일럿 테스트 결과 20분의 체류시간 동안(표면부하율은 $37.3m^3/m^2$일)탁도 300~800 NTU의 폐수를 고분자응집제 주입 없이 10 NTU 이하로 처리할 수 있었으며, 유체유동해석 모델을 활용한 설계인자 도출의 가능성을 확인하였다.

Keywords

References

  1. J. Y. Choi, C. M. Shin, Management of NonpointPollution By Reducing Storm Runoff , p. 1, KEI, 2002.
  2. J. Y. Choi, E. S. Shin, Management of NonpointPollution in Urban Area, p. 37-84, KEI, 1997.
  3. J. W. Gwak, "Influences of Mixing in Wastewater Treatment(II)-Velocity Gradient and Coagulation", Monthly Chemical Engineering, pp. 92-95, July, 2000.
  4. Cao Z., Wiley D. E., Fane A. G., "CFD simulations of net-type turbulence promoters in a narrow channel". J. Membr. Sci., 185, pp. 157-176, 2001. DOI: http://dx.doi.org/10.1016/S0376-7388(00)00643-8
  5. Cockx A., Do-quang Z., Line A. & Roustan M., "Use of computational fluid dynamics for simulating hydrodynamics and mass transfer in industrial ozonation towers", Chem. Eng. Sci., 54(21), pp. 5085-5090, 1999. DOI: http://dx.doi.org/10.1016/S0009-2509(99)00239-0
  6. Choi B. S., Wan B., Philyaw S., Dhanasekharan K. and Ring T. A., "Residence time distributions on a stirred tank: comparison of CFD predictions with experiment", Ind. Eng. Chem. Res, 43(20), pp. 6548-6556, 2004. DOI: http://dx.doi.org/10.1021/ie0308240
  7. Panneerselvam R., Savithri S., Surender G. D., " CFD simulation of hydrodynamics of gas-liquid-solid fluidised bed reactor", Chem. Eng. Sci., 64(6), pp. 1119-1135, 2009. DOI: http://dx.doi.org/10.1016/j.ces.2008.10.052
  8. Anflux, ANSYS workbench release 9.0. Canonsburg, Pennsylvania, U.S.A, 2004.
  9. Kessler David P., Greenkorn Robert A., Momentum, heat and mass transfer fundamentals, Marcel Dekker, New York, 1999.
  10. McCabe Warren L., Smith Julian C., Harriott Peter, Unit operations of chemical engineering, McGraw-Hill, Boston, 2005.