DOI QR코드

DOI QR Code

A Study on Thermal Insulation Property and Thermal Crack Protection for Expanded Perlite Inorganic Composites

팽창진주암 무기복합재에서의 단열성능 및 열크랙 방지에 관한 연구

  • Ahn, WonSool (Department of Chemical Engineering, Keimyung University)
  • 안원술 (계명대학교 화학공학과)
  • Received : 2014.02.05
  • Accepted : 2014.05.08
  • Published : 2014.05.31

Abstract

A study on the crack protection and thermal insulation properties of the expanded perlite inorganic composites was performed. Mixed expanded perlite with a water glass was stabilized for 24 hrs at room temperature in the mold and, thereafter, converted into a massive foamed body through complete drying process at $150^{\circ}C$. Aluminum phosphate and micron size mica powder were used as a reaction accelerator and a stabilizer for thermal crack, respectively. Especially, use of mica exhibited a remarkable effect on the protection of thermal crack at higher temperature over $500^{\circ}C$, and thermal conductivity of the composites was enhanced with higher perlite contents, showing ca. 0.09 W/mK for the sample of 100/200/10/1.5 water glass/perlite/mica/Al phosphate by weight. A severe dimensional deformation of the composite materials was observed over $600^{\circ}C$, however, showing a temperature limitation for a practical application. The facts were considered as the results from the glass transition temperature of the water glass, of which main component is sodium silicate.

$400^{\circ}C$의 고온에서 사용할 수 있는 무기단열재를 개발하기 위한 기초 연구로서 물유리(waterglass)를 바인더로 사용하여 제조한 팽창진주암(expanded perlite) 무기복합재의 단열성과 열 충격에 의한 크랙 방지에 관한 연구를 진행하였다. 정량된 팽창진주암 미세분말과 물유리를 혼합한 반죽을 몰드에 넣고 하루 동안 안정화시킨 후에 $150^{\circ}C$ 오븐에서 완전히 건조하여 샘플을 제작하였다. 인산알미늄(aluminum phosphate)와 마이카(mica)분말이 각각 반응촉진제와 열 충격 방지제로 사용되었다. 특히 마이카 분말이 도입된 샘플은 $500^{\circ}C$ 고온에서도 열에 의한 크랙 발생이 일어나지 않았으며, 샘플의 단열성은 팽창진주암의 혼합비율이 높아질수록 향상됨을 보여주었으며, 중량비로 물유리/perlite/mica/Al phosphate=100/200/10/1.5의 조성비를 같는 샘플은 $500^{\circ}C$에서 약 0.09W/mK의 열전도도를 나타내는 우수한 단열 특성을 나타내었다. 그러나 나트륨 실리케이트(sodium silicate)가 주성분인 물유리 바인더의 열적 특성으로 인하여 $600^{\circ}C$이상의 온도에서는 심한 치수변형을 발생시켜 실제 사용상의 온도 제한성을 보여 주었다.

Keywords

References

  1. A. M. Papadopoulos, "State of the art in thermal insulation materials and aims for future developments", Energy and Buildings, 37, pp. 77-86, 2005. DOI: http://dx.doi.org/10.1016/j.enbuild.2004.05.006
  2. A. Berge and P. Johansson , "Literature Review of High Performance Thermal Insulation", Chalmers Civil and Environmental Engineering, Report 2012:2.
  3. M. A. Kumar, G. R. Reddy, V. P.Chandrakar, "Hydrophilic fumed silica/clay nanocomposites: Effect of silica/clay on performance", International Journal of Nanomaterials and Biostructures, 1(1), pp. 1-11, 2011. DOI: http://dx.doi.org/10.1155/2011/189731
  4. J. C. Lin, L. C. Chang, M. H. Nien, H. L. Ho, "Mechanical behavior of various nanoparticle filled composites at low- velocity impact", Comp. Struct., 74, pp. 30-36, 2006. DOI: http://dx.doi.org/10.1016/j.compstruct.2005.03.006
  5. Y. Zheng, Y. Zheng, R. Ning, "Effects of nanoparticle SiO2 on the performance of nanocomposites, Mater. Lett., 57, pp. 2940-2944, 2003. DOI: http://dx.doi.org/10.1016/S0167-577X(02)01401-5
  6. M. H. G. Wichmann, M. Cascione, B. Fiedler, M. Quaresimin, K. Schulte, "Influence of Surface treatment on mechanical behaviour of fumed silica/epoxy nanocomposites", Comp. Interf., 13, pp. 699-715, 2006. DOI: http://dx.doi.org/10.1163/156855406779366723
  7. L. Le Pluart, J. Duchet, H. Sautereau, "Epoxy/montmorillonite nanocomposites: influence of organophilic treatment on reactivity, morphology and fracture properties, Polym., 46, pp. 1267-1278, 2005. DOI: http://dx.doi.org/10.1016/j.polymer.2005.10.089
  8. M. A. Kumar, K. H. Reddy, Y. V. Mohana Reddy, G. Ramachandra Reddy, N. S. V. Kumar, B. H. Nanjunda Reddy, "Assessment of nanoclay filled epoxy on mechanical, thermal and chemical resistance properties of nanocomposites", J. Metal. Mater. Sci., 52, pp. 305-315, 2010.
  9. C.-T. Lee, M. Jang, and T-M. Park, "A Foamed Body through the Complexation with the Sepiolite and Expanded Pearlite", Appl. Chem. Eng., 23(1), pp. 77-85, 2012.
  10. Seokyung CMT Co., www.sk-cmt.co.kr
  11. Young-il Chemical Co., www.youngilchem.co.kr