DOI QR코드

DOI QR Code

A New Calculation Method of Equalizer algorithms based on the Probability Correlation

확률분포 상관도에 기반한 Equalizer 알고리듬의 새로운 연산 방식

  • Kim, Namyong (School of Electronic, Info. & Comm. Engineering, Kangwon National University)
  • 김남용 (강원대학교 전자정보통신공학부)
  • Received : 2014.01.08
  • Accepted : 2014.05.08
  • Published : 2014.05.31

Abstract

In many communication systems, intersymbol interference, DC and impulsive noise are hard-to-solve problems. For the purpose of cancelling such interferences, the concept of lagged cross-correlation of probability has been used for blind equalization. However, this algorithm has a large burden of computation. In this paper, a recursive method of the algorithm based on the lagged probability correlation is proposed. The summation operation in the calculation of gradient of the cost is transformed into a recursive gradient calculation. The recursive method shows to reduce the high computational complexity of the algorithm from O(NM) to O(M) for M symbols and N block data having advantages in implementation while keeping the robustness against those interferences. From the results of the simulation, the proposed method yields the same learning performance with reduced computation complexity.

많은 통신 시스템에서 심볼간 간섭, 직류성 및 충격성 잡음은 해결하기 어려운 문제로 남아있다. 이러한 간섭신호들을 제거하기 위하여 확률분포 상관도 개념이 블라인드 Equalization에 사용되었다. 그러나 이 알고리듬은 과다한 계산량이 문제로 남아 있다. 이 논문에서는 확률분포 상관도에 기반한 블라인드 알고리듬의 반복적 계산 방법을 제안하였다. 비용함수의 기울기 계산에 쓰이는 합산 계산을 반복적 방식으로 기울기를 계산하도록 바꾸었다. 이 방식은 M 개의 송신 심볼에 대해 N 개의 블록 샘플들을 가지고 계산하는 기존 알고리듬의 계산량 O(NM)으로부터 O(M)으로 그 계산량을 획기적으로 줄인다. 따라서 현실적 구현의 장점을 가지면서 동시에 잡음 및 간섭에 대한 강인성을 그대로 유지한다. 시뮬레이션 결과에서도 제안한 방식은 줄여진 계산량으로 동일한 학습 성능을 보였다.

Keywords

References

  1. D. V. Arnold, "A general noise model and its effects on evolution strategy performance," IEEE Transactions on Evolutionary Computation, Vol. 10, No. 4, pp. 380-391, 2006. DOI: http://dx.doi.org/10.1109/TEVC.2005.859467
  2. Nam-Ri Kim, Jea-Hak Chung, "Trends of underwater communications and channel environment characteristics," JIIBC, Vol. 9, No. 5, pp. 243-247, May, 2009.
  3. S. B. Alexander, Optical communication receiver design, SPIE Optical Engineering Press, Bellingham, Washington, 1997. DOI: http://dx.doi.org/10.1117/3.219402
  4. S. Arnon, "Performance of a laser satellite network with an optical preamplifier," J. Opt. Soc. Vol. 22, No. 4, pp. 709-715, 2005. DOI: http://dx.doi.org/10.1364/JOSAA.22.000708
  5. M. Z. Hassan, X. Song, and J. Cheng, "Subcarrier intensity modulated wireless optical communications with rectangular QAM", Journal of Optical Communications and Networking, Vol. 4, No. 6, pp. 522-532, 2012. DOI: http://dx.doi.org/10.1364/JOCN.4.000522
  6. Z. Dong, K. Cui, G. Chen, and Z. Xu, "Non-line-of-sight link performance study for indoor visible light communication systems," Proc. of SPIE Photonics and Optics- Free Space Laser Communications IX, San Diego, CA, pp. 781404-1-781404-10, August 2010. DOI: http://dx.doi.org/10.1117/12.860067
  7. H. Lee, Y. Kim, and K. Sohn, "Optical wireless sensor networks based on VLC with PLC-Ethernet interface," World Academy of Science, Engineering and Technology, Vol. 57, pp. 245-248, July, 2011.
  8. J. Carruthers, S. Carroll, and P. Kannan, "Propagation modelling for indoor optical wireless communications using fast multi-receiver channel estimation," Optoelectronics, IEE Proceedings, Vol. 150, pp. 473-481, Oct. 2003. DOI: http://dx.doi.org/10.1049/ip-opt:20030527
  9. N. Andreadou, and F. Pablidou, "PLC channel: impulsive noise modelling and its performance evaluation under different array coding schemes," IEEE Trans. Power Delivery, Vol. 24, pp. 585-595, April. 2009. DOI: http://dx.doi.org/10.1109/TPWRD.2008.2002958
  10. N. Kim and Y. Hwang, "Communication equalizer algorithms with decision feedback based on error probability," Journal of the Korea Academia-Industrial cooperation society, Vol. 12, pp.2930-2395, May, 2011. DOI: http://dx.doi.org/10.5762/KAIS.2011.12.5.2390
  11. N. Kim, K. Kwon and Y, You, "Lagged cross-correlation of probability density functions and application to blind equalization," JCN, Vol. 14, pp. 540-545, Oct. 2012. DOI: http://dx.doi.org/10.1109/JCN.2012.00012
  12. E. Parzen, "On the estimation of a probability density function and the mode," Ann. Math. Stat. Vol. 33, p. 1065, 1962. DOI: http://dx.doi.org/10.1214/aoms/1177704472
  13. C. Johnson Jr., "Blind equalization using the constant modulus criterion: A Review," in Proc. of the IEEE, Vol. 86, pp. 1927-1950, Oct. 1998. DOI: http://dx.doi.org/10.1109/5.720246