DOI QR코드

DOI QR Code

Theoretical approach on the heating and cooling system design for an effective operation of Li-ion batteries for electric vehicles

전기구동 자동차용 리튬이온 배터리의 고효율 운전을 위한 냉방 및 난방 시스템 설계에 대한 이론적 접근법

  • Kim, Dae-Wan (Graduate School of Mechanical Engineering, Dong-A University) ;
  • Lee, Moo-Yeon (Department of Mechanical Engineering, Dong-A University)
  • 김대완 (동아대학교 기계공학과 대학원) ;
  • 이무연 (동아대학교 기계공학과)
  • Received : 2013.01.10
  • Accepted : 2014.05.08
  • Published : 2014.05.31

Abstract

This study is aiming to suggest the effective thermal management system design technologies for the high voltage and capacity battery system of the electricity driven vehicles and introduce the theoretical designing methods. In order to investigate the effective operation of the battery system for the electricity driven vehicles, the heat generation model for Li-ion battery system using the chemical reaction while charging and discharging was suggested and the thermal loads of the heat sources (air or liquid) for cooling and heating were calculated using energy balance. Especially, the design methods for the cooling and heating of the battery system for maintaining the optimum operation temperature were investigated under heating, cooling and generated heat (during charging and discharging) conditions. The battery thermal management system for the effective battery operation of the electricity driven vehicles was suggested reasonably depending on the variation of the season and operation conditions. In addition, at the same conditions under summer season, the cooling method using the liquid and active cooling technique showed a relatively high capacity, while cooling method using the passive cooling technique showed a relatively low capacity.

본 연구에서는 전기구동 자동차에 동력원으로 사용되는 고전압 및 고용량 배터리의 고효율 운전을 위하여 배터리 열관리 시스템 기술을 소개하고 이론적 설계 방법에 소개하고 한다. 이를 위하여 전기구동 자동차의 배터리로 많이 사용되는 리튬이온 배터리의 고효율 운전을 위한 발열 모델링을 제시하였고, 열원의 종류에 따른 냉방 및 난방 시스템 설계를 에너지 평형식을 이용하여 부하를 계산하였다. 특히, 리튬이온 배터리의 발열 모델링을 이용하여 충전 및 방전 시 발열 반응열과 혹서기 및 혹한기시 배터리 작동의 최적 온도를 유지하기 위한 냉방과 난방 설계 기술을 제시하였다. 전기구동 자동차 종류에 따라 배터리 사용 비중이 다르기 때문에 효율적인 배터리 열관리를 위하여 계절별 및 작동 모드별 부하에 따른 배터리 열관리 기술을 제안하였다. 또한, 냉방 부하가 가장 큰 여름철 동일 조건에서 외부 공기 온도가 같다고 가정하면 냉방 능력은 수랭식 냉매 방법이 가장 크며 공랭식 방법이 가장 작게 나타난다.

Keywords

References

  1. H. S. Kim, B. Y. Han, H. K. Park, "Flow analyses around the battery pack for a new", Trans. of the Korean Society for Comutational Fluids Engineering, Vol. 16, No. 3, pp. 82-87, 2011.
  2. H. S. Lee, C. W. Cho, J. P. Won, M. Y. Lee, "Performance Characteristics of the Thermal Management System for Passenger Hydrogen Fuel Cell Vehicle"Journal of the Korea Academia-Industrial cooperation Society, Vol. 13, No. 3, pp. 986-993, 2012. DOI: http://dx.doi.org/10.5762/KAIS.2012.13.3.986
  3. S. J. Park, D. H. Hung, "Design of vehicle cooling system architecture for a heavy duty series-hybrid electric vehicle using numerical system simulations", Journal of Engineering for Gas Turbines and Power Transactions of the ASME, Vol. 132, No. 9, 092802. 2010. DOI: http://dx.doi.org/10.1115/1.4000587
  4. K. H. Kim, B. S. Han, Y. B. Yang, KEIT PD Issue report, pp. 61-83, Korea Evaluation Institute of Industrial Technology, 2012
  5. J. P. Won, H. S. Lee, "The Need to Develop Thermal Management System Technologies of Electric Driven Vehicles (EV, PHEV, FCEV)", Auto Journal, Vol. 33, No. 12, pp. 22-28, 2011.
  6. M. Y. Lee, "Thermal Management of the Motor/Battery System for Electric Driven Vehicles (VTMS)", Auto Journal, Vol. 33, No. 12, pp. 36-41, 2011.
  7. Y. Xing, E. W. M. Ma, K. L. Tsui, M. Pecht, "Battery Management Systems in Electric and Hybrid Vehicles", Energies, Vol. 4, No. 11, pp. 1840-1857, 2011. DOI: http://dx.doi.org/10.3390/en4111840
  8. J. W. Choi, G. Y. Cho, J. H. Park, J. H. Lim, H. C. Jeong, S. W. Cha, "Effects of Battery Thermal Management System in EV Based on Sinulation", Proceedings of the KSAE 2011 fall annual Conference, pp. 2617-2621, 2011.
  9. J. Y. Han, S. S. Kim, S. S. Yu, "Lithium-ion battery thermal management two-dimension modeling for hybrid vehicles thermal management", Proceedings of the KSAE 2012 fall annual Conference, pp. 2338-2343, 2012
  10. M. Flik, T. Heckenberger, S. Edwards, P. Kroner, "Thermal Management For Hybrid Vehicles", Technical Press Day 2009, 2009
  11. B. Pfeifer, C. Ghiu, "Industry Developments : EV Battery Thermal Management", Qpedia, 2013, http://www.coolingzone.com, July 2013
  12. X. Hu, "Battery Thermal Management in Electric Vehicles", ANSYS, 2013, http://www.ansys.com
  13. U. S. Kim, "A study on the thermal behaviors of lithium-ion batteries for electric vehicle applications", Doctor Thesis, Ajou University, 2013.
  14. C. H. Park, S. J. Kim, H. S. Hwang, H. G. Lee, "Development of a battery management system(BMS) simulator for electric vehicle(EV) cars", Journal of the Korea Academia-Industrial cooperation Society, Vol. 13, No. 6, pp. 2484-2490, 2012. DOI: http://dx.doi.org/10.5762/KAIS.2012.13.6.2484
  15. J. C. Jang, S. H. Rhi, S. K. Kim, "Electric Automotive Battery Cooling System with Heat pipe", Proceedings of the KSME 2010 fall annual Conference, pp. 2596-2600, 2010.
  16. J. S. Lee, "Thermal modeling of a lithium-ion battery pack", Master Thesis, Ajou University, 2010
  17. H. S. Song, "A Study on the Modeling and Efficient Operating Condition of the Liquid-cooled Battery System for RE-EVs", Doctor Thesis, Korea University, 2013.
  18. J. W. Choi, "Development of a Thermal Management System Model and a Capacity Fade Model for Li-ion Batteries in Electric Vehicles", Master Thesis, Seoul National University, 2013.
  19. S. J. Park, "Simulation on thermal management system in hybrid and electric vehicle", SAREK Journal, Vol. 42, No. 10, pp. 48-57, 2013