DOI QR코드

DOI QR Code

Effect of CO2 Injection in SAGD Process for Oil Sand Bitumen Recovery

고온 고압 스팀을 주입하는 SAGD 공정에서 CO2주입이 오일샌드 역청 회수율에 미치는 영향

  • Song, Byung Jin (Division of Green Chemistry & Engineering Research, Korea Research Institute of Chemical Technology (KRICT)) ;
  • You, Nansuk (Division of Green Chemistry & Engineering Research, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Lee, Jae Hoon (Korea Energy Management Corporation) ;
  • Lee, Chul Wee (Division of Green Chemistry & Engineering Research, Korea Research Institute of Chemical Technology (KRICT))
  • 송병진 (한국화학연구원 그린화학공정연구본부) ;
  • 유난숙 (한국화학연구원 그린화학공정연구본부) ;
  • 이재훈 (에너지관리공단) ;
  • 이철위 (한국화학연구원 그린화학공정연구본부)
  • Received : 2014.02.20
  • Accepted : 2014.04.29
  • Published : 2014.06.10

Abstract

SAGD (steam assisted gravity drainage) process is the most commonly used in-situ technology for the recovery of bitumen from oil sand. It was investigated that the effects of different additives on bitumen recovery rate from oil sand in SAGD process among many possible mechanisms studied throughout the study. Bitumen recovery from thin layer oil sand reservoirs was simulated by using an experimental SAGD apparatus with scale of 150:1. To improve the simulation accuracy of thin layer oil reservoir, we have attached geological model (GM). Oil sand was simulated by using a mixture of extra heavy oil and glass beads with a diameter of 1.5 mm. $CO_2$ was used as an additive and the evolution of steam chambers were closely monitored, and the effects of $CO_2$ as an additive was investigated. Two types of injection methods were tested; continuous ($cCO_2$-SAGD) and sequential interruption ($sCO_2$-SAGD) $CO_2$ injection. For the $sCO_2$-SAGD experiment, it was observed that the recovery rates and CSOR were efficiently improved control experiment from 60.2% to 69.3% and 7.1 to 6.0, respectively, whereas $cCO_2$-SAGD experiment decreased from 60.2% to 57.6% and 7.1 to 7.3.

오일샌드에서 비투맨(bitumen)을 회수하는 지하회수방식 중 가장 많이 사용하는 기술인 SAGD (steam assisted gravity drainage)공정으로부터 비투맨의 회수율을 향상시키고자 스팀과 함께 주입한 첨가제의 효과와 매커니즘에 대해서 연구하였다. 실제 광구에서 쓰이는 SAGD공정을 150 : 1로 축소한 실험실 규모의 모사장비가 사용되었으며, 지하 박층을 모사할 수 있는 장치(이하 GM, geological model)가 사용되었다. 초중질유와 글래스비드(glass bead 1.5 mm)의 혼합물은 오일샌드의 모사재료로 사용되었다. 첨가제로서 $CO_2$가 사용되었으며, 스팀 챔버(steam chamber)의 성장 변화를 비교 분석하였다. $CO_2$의 주입방식에 따른 효과를 확인하기 위하여 스팀과 $CO_2$를 연속 주입하는 실험($cCO_2$-SAGD)과 순차적으로 주입하는 실험($sCO_2$-SAGD)을 실시하였다. 그 결과 $sCO_2$-SAGD 실험의 경우 Control 실험 대비 오일 회수율은 60.2%에서 69.3%로 향상되었으며 cSOR의 경우 7.1에서 6.0으로 낮아졌다. 반면에 $cCO_2$-SAGD 실험의 경우 60.2%에서 57.6%, 7.1에서 7.3으로 증가 되었다.

Keywords

References

  1. I. D. Gates and N. Chakrabarty, Design of the Steam and Solvent Injection Strategy in Expanding Solvent Steam-Assisted Gravity Drainage, J. Can. Pet. Technol., 47, 12-20 (2008).
  2. K. B. Lee, S. G. Jeon, N. S. Nho, K. H. Kim, D. H. Shin, S. W. Kim, and Y. H. Kim, Patent Analysis of Oil Sands Bitumen Upgrading Technologies, J. Korean Ind. Eng. Chem., 19, 592-599 (2008).
  3. K. Y. Park, S. D. Han, H. J. Han, K. S. Kang, W. S. Bae, and Y. W. Rhee, A Study on the Trend of Technology for the Treatment of Oil from Oilsands by Patent Analysis, Clean Tech., 15, 210-223 (2009).
  4. J. K. Lee and H. C. Ko, Oil Sand Development and Future Projects in Canada, Regional Economic Focus, 1, 1-13 (2007).
  5. Y. K. Park, W. C. Choi, S. Y. Jeong, and C. W. Lee, High Value-added Technology of Oil Sand, Korean Chem. Eng. Res., 45, 109-116 (2007).
  6. Y. K. Kwon, Geology of Athabasca Oil Sands in Canada, Korean Jour. of Petrol. Geol., 14, 1-11 (2008).
  7. S. H. Yoon, N. S. You, D. P. Upare, and C. W. Lee, Improved method for recovery and upgrading of oil sand, KR Patent 1,020,130,028,743 (2013).
  8. R. M. Butler, A New Approach to the Modeling of Steam-Assisted Gravity Drainage, J. Can. Pet. Technol., 24, 42-51 (1985). https://doi.org/10.2118/85-03-01
  9. K. Sasaki, S. Akibayashi, N. Yazawa, Q. T. Doan, and S. M. Ali, Experimental Modeling of the SAGD Process-Enhancing SAGD Performance with Periodic Stimulation of the Horizontal Producer, SPE. J., 6, 89-97 (2001). https://doi.org/10.2118/69742-PA
  10. J. S. Shin, Y. K. Sun, Y. C. Park, D. H. Bae, S. H. Jo, and D.W. Shun, Study of Pyrolysis Behavior of Alberta Oil Sand by Continuous Operation of Fluidized-Bed Reactor, Korean Chem. Eng. Res., 48, 68-74 (2010).
  11. S. H. Yoon, N. S. You, and C. W. Lee, Method for recovering bitumen from oil sand by injecting gas, KR Patent 1,020,130,128,228 (2013).
  12. K. Steve and B. Gary, Fuel gas injection for heavy oil recovery, U.S Patent 7,341,102 (2008).
  13. T. A. Halim and S. Murugesan, Field upgrading of heavy oil and bitumen, U.S Patent 6,357,526 (2002).
  14. A. S. Bagci, O. G. Sotuminu, and E. J. Mackay, Performance Analysis of SAGD Wind-Down Process With $CO_2$ Injection, SPE. J., 11, 32-46 (2008).
  15. A. P. Sullivan and P. K. Kilpatrick, The Effects of Inorganic Solid Particles on Water and Crude Oil Emulsion Stability, Ind. Eng. Chem. Res., 41, 3389-3404 (2002). https://doi.org/10.1021/ie010927n
  16. N. N. Zaki, P. K. Kilpatrick, and R. G. Carbonell, Methods of demulsifying emulsions using carbon dioxide, US Patent 6,566,410 (2003).
  17. N. S. You, S. H. Yoon, K. W. Lee, H. Y. Lee, S. Y. Park, J. H. Shim, J. S. Kim, and C. W. Lee, Design, construction and operation of lab scale cylindrical steam assisted gravity drainage model for heavy oil recovery, Korean J. Chem. Eng., 27, 1718-1724 (2010). https://doi.org/10.1007/s11814-010-0276-6
  18. N. S. You, S. H. Yoon, and C. W. Lee, Steam chamber evolution during SAGD and ES-SAGD in thin layer oil sand reservoirs using a 2-D scaled model, J. Ind. Eng. Chem., 18, 2051-2058 (2012). https://doi.org/10.1016/j.jiec.2012.05.026
  19. B. J. Song, N. S. You, J. M. Kim, and C. W. Lee, Effect of FeOX Inorganic Additive in SAGD Process for Oil Sand Recovery, Appl. Chem. Eng., 25, 113-115 (2014). https://doi.org/10.14478/ace.2013.1113