DOI QR코드

DOI QR Code

Performance evaluation of SFRC for tunnel segments based on large beam test

대형보 실험을 통한 TBM 터널 세그먼트용 강섬유보강콘크리트 성능평가

  • Moon, Do-Young (Department of Civil Engineering, Kyungsung Univ.) ;
  • Roh, Hwasung (Department of Civil Engineering, Chonbuk National Univ.) ;
  • Chang, Soo-Ho (Geotechnical Engineering Research Division, Korea Institute of Construction Technology) ;
  • Lee, Gyu-Phil (Geotechnical Engineering Research Division, Korea Institute of Construction Technology) ;
  • Bae, Gyu-Jin (Geotechnical Engineering Research Division, Korea Institute of Construction Technology)
  • 문도영 (경성대학교 토목공학과) ;
  • 노화성 (전북대학교, 토목공학과) ;
  • 장수호 (한국건설기술연구원 Geo-인프라연구실) ;
  • 이규필 (한국건설기술연구원 Geo-인프라연구실) ;
  • 배규진 (한국건설기술연구원 Geo-인프라연구실)
  • Received : 2014.04.08
  • Accepted : 2014.04.21
  • Published : 2014.05.31

Abstract

In order to develop SFRC TBM tunnel segment, evaluating the SFRC mixture was conducted through flexural tests of SFRC beams without ordinary steel reinforcement in this study. Considered variables were compressive strengths of SFRC, aspect and mix ratio of steel fibers and total 16 specimens were fabricated and tested until failure. The load-vertical displacement results demonstrates that the effect of aspect ratio is minor when compared to results form small beam test(Moon et al, 2013). A SFRC beam resists the vertical load until the width of crack reaches to 7 mm due to steel fibers across cracked surfaces. Moreover, it is found that flexural moment estimated by equation of TR No. 63(Concrete Society, 2011) is useful for prediction of nominal strength for SFRC structure. From the investigation of fiber distribution in cracked section, it is found that dispersion improved in actual size beam compared to in standard small beam for evaluation of flexural strength.

본 연구에서는 TBM 터널 SFRC 세그먼트 개발을 위하여 이형철근이 보강되지 않은 SFRC 보의 휨파괴 실험을 통하여 SFRC 배합의 평가를 수행하였다. 압축강도, 강섬유의 형상비와 강섬유 혼입률을 변수로 하여 총 16개의 SFRC 보를 제작하고 휨에 의하여 파괴시까지 실험하였다. 하중-수직변위 분석결과, 큰 형상비의 강섬유를 사용하여도 소형보의 실험(Moon et al, 2013)과 달리 보의 인성거동을 증진시키는 효과는 거의 없는 것으로 나타났다. 극한상태에서 강섬유는 균열폭 7 mm까지 하중을 저항하는 것으로 확인되었다. 또한, 기존의 SFRC 보의 휨강도예측모델과 실험결과를 비교한 결과, SFRC 보의 휨강도를 최대 20배까지 과소평가하고 있는 것으로 나타났다. 그러나, TR No. 63 모델(Concrete Society, 2011)은 다른 모델에 비하여 근사하게 휨강도를 예측하는 것으로 확인되었다. 강섬유의 분포에 대한 분석결과, 소형보에서 보다 실제 규모의 보에서 강섬유의 분산도가 훨씬 개선되는 것을 확인하였다.

Keywords

References

  1. ACI Committee 544. (1999), "Design considerations for steel fiber reinforced concrete (ACI 544.4R-88)", Farmington Hills (Michigan, MI): American Concrete Institute; 1988. Re-approved 1999. pp. 10-11.
  2. ACI Committee 318. (2011), "Building code requirement for structural concrete and commentary", Farmington Hills (Michigan, MI): American Concrete Institute; pp. 170-172.
  3. Chiaia, B., Fantilli, A.P., Vallini, P. (2009), "Combining fiber-reinforced concrete with traditional reinforcement in tunnel linings", Engineering Structures, Vol. 31, Issue 7, pp. 1600-1606. https://doi.org/10.1016/j.engstruct.2009.02.037
  4. Conforti, A., Minelli, Fausto, M., Plizzari, G. A. (2013), "Wide-shallow beams with and without steel fibers: A peculiar behaior in shear and flexure", Composites: Part B, Vol. 51, pp. 282-290. https://doi.org/10.1016/j.compositesb.2013.03.033
  5. Dobashi, H., Konishi, Y., Nakayama, M., Matsubara, K. (2006), "Development of steel fiber reinforced high fluidity concrete segment and application to construction", Tunneling and Underground Space Technology, Vol. 21, p. 422. https://doi.org/10.1016/j.tust.2005.12.066
  6. fib (2010), "Model code 2010, first complete draft", Vol. 1, pp. 200-231.
  7. Fuente, A., Pujadas, P., Balanco, A., Aguado, A. (2012), "Experiences in barcelona with the use of fibers in segmental linings", Tunneling and Underground Space Technology, Vol. 27, pp. 60-71. https://doi.org/10.1016/j.tust.2011.07.001
  8. Moon, D., Kang, T., Chang, S., Lee, G., Bae, G. (2013), "Flexural performance evaluation of SFRC with design strength of 60 MPa", Journal of Korean Tunnelling and Underground Space Association, Vol. 15, No. 3, pp. 175-186. https://doi.org/10.9711/KTAJ.2013.15.3.175
  9. Rivaz, B. (2008), "Steel fiber reinforced concrete (SFRC): The use of SFRC in precast segment for tunnel linings", World Tunnel Congress 2008-Underground Facilities for Better Environment and Safety-India, pp. 2007-2017.
  10. Sorelli, L.G., Meda, A., Plizzari, G.A. (2005), "Bending and uniaxial tensile tests on concrete reinforced with hybrid steel fibers", Journal of Materials in Civil Engineering, Vol. 17, No. 5, pp. 519-527. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:5(519)
  11. Concrete Society (2011), "Technical report no. 63, guidance for the design of steel-fiber-reinforced Concrete", Report of a Concrete Society Working Group, p. 35.
  12. Tiberti, G., Plizzari, G.A., Walraven, J.C., Blom, C.B.M. (2008), "Concrete tunnel segments with combined traditional and fiber reinforcement", Tailor Made Concrete Structures, Taylor & Francis Group, pp. 199-204.
  13. Oh, Y.H. (2008), "Evaluation of flexural strength for normal and high strength concrete with hooked steel fibers", Journal of the Korean Concrete Institute, Vol. 20, No. 4, pp. 531-539. https://doi.org/10.4334/JKCI.2008.20.4.531

Cited by

  1. Electromagnetic wave shielding effectiveness of steel fiber reinforced concrete vol.17, pp.2, 2015, https://doi.org/10.9711/KTAJ.2015.17.2.107