DOI QR코드

DOI QR Code

VALIDATION OF GLOBAL LONGITUDINAL STRAIN AND STRAIN RATE AS RELIABLE MARKERS OF RIGHT VENTRICULAR DYSFUNCTION: COMPARISON WITH CARDIAC MAGNETIC RESONANCE AND OUTCOME

  • Park, Jae-Hyeong (Department of Cardiovascular Medicine, Cleveland Clinic) ;
  • Negishi, Kazuaki (Department of Cardiovascular Medicine, Cleveland Clinic) ;
  • Kwon, Deborah H. (Department of Cardiovascular Medicine, Cleveland Clinic) ;
  • Popovic, Zoran B. (Department of Cardiovascular Medicine, Cleveland Clinic) ;
  • Grimm, Richard A. (Department of Cardiovascular Medicine, Cleveland Clinic) ;
  • Marwick, Thomas H. (Department of Cardiovascular Medicine, Cleveland Clinic)
  • 투고 : 2014.05.16
  • 심사 : 2014.08.20
  • 발행 : 2014.09.27

초록

BACKGROUND: Right ventricular (RV) dysfunction in ischemic cardiomyopathy (ICM) is associated with poor prognosis, but RV assessment by conventional echocardiography remains difficult. We sought to validate RV global longitudinal strain (RVGLS) and global longitudinal strain rate (RVGLSR) against cardiac magnetic resonance (CMR) and outcome in ICM. METHODS: In 57 patients (43 men, $64{\pm}12$ years) with ICM who underwent conventional and strain echocardiography and CMR, RVGLS and RVGLSR were measured off-line. RV dysfunction was determined by CMR [RV ejection fraction (RVEF) < 50%]. Patients were followed over $15{\pm}9$ months for a composite of death and hospitalization for worsening heart failure. RESULTS: RVGLS showed significant correlations with CMR RVEF (r = -0.797, p < 0.01), RV fractional area change (RVFAC, r = -0.530, p < 0.01), and tricuspid annular plane systolic excursion (TAPSE, r = -0.547, p < 0.01). RVGLSR showed significant correlations between CMR RVEF (r = -0.668, p < 0.01), RVFAC (r = -0.394, p < 0.01), and TAPSE (r = -0.435, p < 0.01). RVGLS and RVGLSR showed significant correlations with pulmonary vascular resistance (r = 0.527 and r = 0.500, p < 0.01, respectively). The best cutoff value of RVGLS for detection of RV dysfunction was -15.4% [areas under the curve (AUC) = 0.955, p < 0.01] with a sensitivity of 81% and specificity 95%. The best cutoff value for RVGLSR was $-0.94s^{-1}$ (AUC = 0.871, p < 0.01), sensitivity 72%, specificity 86%. During follow-up, there were 12 adverse events. In Cox-proportional hazard regression analysis, impaired RVGLS [hazard ratio (HR) = 5.46, p = 0.030] and impaired RVGLSR (HR = 3.95, p = 0.044) were associated with adverse clinical outcome. CONCLUSION: Compared with conventional echocardiographic parameters, RVGLS and RVGLSR correlate better with CMR RVEF and outcome.

키워드

참고문헌

  1. Di Salvo TG, Mathier M, Semigran MJ, Dec GW. Preserved right ventricular ejection fraction predicts exercise capacity and survival in advanced heart failure. J Am Coll Cardiol 1995;25:1143-53. https://doi.org/10.1016/0735-1097(94)00511-N
  2. Juilliere Y, Barbier G, Feldmann L, Grentzinger A, Danchin N, Cherrier F. Additional predictive value of both left and right ventricular ejection fractions on long-term survival in idiopathic dilated cardiomyopathy. Eur Heart J 1997;18:276-80. https://doi.org/10.1093/oxfordjournals.eurheartj.a015231
  3. de Groote P, Millaire A, Foucher-Hossein C, Nugue O, Marchandise X, Ducloux G, Lablanche JM. Right ventricular ejection fraction is an independent predictor of survival in patients with moderate heart failure. J Am Coll Cardiol 1998;32:948-54. https://doi.org/10.1016/S0735-1097(98)00337-4
  4. Zornoff LA, Skali H, Pfeffer MA, St John Sutton M, Rouleau JL, Lamas GA, Plappert T, Rouleau JR, Moye LA, Lewis SJ, Braunwald E, Solomon SD; SAVE Investigators. Right ventricular dysfunction and risk of heart failure and mortality after myocardial infarction. J Am Coll Cardiol 2002;39:1450-5. https://doi.org/10.1016/S0735-1097(02)01804-1
  5. Oldershaw P. Assessment of right ventricular function and its role in clinical practice. Br Heart J 1992;68:12-5. https://doi.org/10.1136/hrt.68.7.12
  6. Tandri H, Daya SK, Nasir K, Bomma C, Lima JA, Calkins H, Bluemke DA. Normal reference values for the adult right ventricle by magnetic resonance imaging. Am J Cardiol 2006;98:1660-4. https://doi.org/10.1016/j.amjcard.2006.07.049
  7. Mannaerts HF, van der Heide JA, Kamp O, Stoel MG, Twisk J, Visser CA. Early identification of left ventricular remodelling after myocardial infarction, assessed by transthoracic 3D echocardiography. Eur Heart J 2004;25:680-7. https://doi.org/10.1016/j.ehj.2004.02.030
  8. Kjaergaard J, Petersen CL, Kjaer A, Schaadt BK, Oh JK, Hassager C. Evaluation of right ventricular volume and function by 2D and 3D echocardiography compared to MRI. Eur J Echocardiogr 2006;7:430-8. https://doi.org/10.1016/j.euje.2005.10.009
  9. Jamal F, Bergerot C, Argaud L, Loufouat J, Ovize M. Longitudinal strain quantitates regional right ventricular contractile function. Am J Physiol Heart Circ Physiol 2003;285:H2842-7. https://doi.org/10.1152/ajpheart.00218.2003
  10. Pirat B, McCulloch ML, Zoghbi WA. Evaluation of global and regional right ventricular systolic function in patients with pulmonary hypertension using a novel speckle tracking method. Am J Cardiol 2006;98:699-704. https://doi.org/10.1016/j.amjcard.2006.03.056
  11. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, Solomon SD, Louie EK, Schiller NB. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 2010;23:685-713; quiz 786-8. https://doi.org/10.1016/j.echo.2010.05.010
  12. Abbas AE, Fortuin FD, Schiller NB, Appleton CP, Moreno CA, Lester SJ. A simple method for noninvasive estimation of pulmonary vascular resistance. J Am Coll Cardiol 2003;41:1021-7. https://doi.org/10.1016/S0735-1097(02)02973-X
  13. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982;143:29-36. https://doi.org/10.1148/radiology.143.1.7063747
  14. Biancari F, Vasques F, Mikkola R, Martin M, Lahtinen J, Heikkinen J. Validation of EuroSCORE II in patients undergoing coronary artery bypass surgery. Ann Thorac Surg 2012;93:1930-5. https://doi.org/10.1016/j.athoracsur.2012.02.064
  15. Risk stratification and survival after myocardial infarction. N Engl J Med 1983;309:331-6. https://doi.org/10.1056/NEJM198308113090602
  16. Kaul S, Tei C, Hopkins JM, Shah PM. Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J 1984;107:526-31. https://doi.org/10.1016/0002-8703(84)90095-4
  17. Schenk P, Globits S, Koller J, Brunner C, Artemiou O, Klepetko W, Burghuber OC. Accuracy of echocardiographic right ventricular parameters in patients with different end-stage lung diseases prior to lung transplantation. J Heart Lung Transplant 2000;19:145-54. https://doi.org/10.1016/S1053-2498(99)00121-7
  18. Hinderliter AL, Willis PW 4th, Long WA, Clarke WR, Ralph D, Caldwell EJ, Williams W, Ettinger NA, Hill NS, Summer WR, de Boisblanc B, Koch G, Li S, Clayton LM, Jobsis MM, Crow JW; PPH Study Group. Frequency and severity of tricuspid regurgitation determined by Doppler echocardiography in primary pulmonary hypertension. Am J Cardiol 2003;91:1033-7, A9. https://doi.org/10.1016/S0002-9149(03)00136-X
  19. Beygui F, Furber A, Delepine S, Helft G, Metzger JP, Geslin P, Le Jeune JJ. Routine breath-hold gradient echo MRI-derived right ventricular mass, volumes and function: accuracy, reproducibility and coherence study. Int J Cardiovasc Imaging 2004;20:509-16. https://doi.org/10.1007/s10554-004-1097-7
  20. Grothues F, Moon JC, Bellenger NG, Smith GS, Klein HU, Pennell DJ. Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance. Am Heart J 2004;147:218-23. https://doi.org/10.1016/j.ahj.2003.10.005
  21. Bleeker GB, Steendijk P, Holman ER, Yu CM, Breithardt OA, Kaandorp TA, Schalij MJ, van der Wall EE, Nihoyannopoulos P, Bax JJ. Assessing right ventricular function: the role of echocardiography and complementary technologies. Heart 2006;92 Suppl 1:i19-26. https://doi.org/10.1136/hrt.2005.082503
  22. Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E, Stoylen A, Ihlen H, Lima JA, Smiseth OA, Slordahl SA. Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 2006;47:789-93. https://doi.org/10.1016/j.jacc.2005.10.040
  23. Toyoda T, Baba H, Akasaka T, Akiyama M, Neishi Y, Tomita J, Sukmawan R, Koyama Y, Watanabe N, Tamano S, Shinomura R, Komuro I, Yoshida K. Assessment of regional myocardial strain by a novel automated tracking system from digital image files. J Am Soc Echocardiogr 2004;17:1234-8. https://doi.org/10.1016/j.echo.2004.07.010
  24. Stanton T, Leano R, Marwick TH. Prediction of all-cause mortality from global longitudinal speckle strain: comparison with ejection fraction and wall motion scoring. Circ Cardiovasc Imaging 2009;2:356-64.
  25. Verhaert D, Mullens W, Borowski A, Popovic ZB, Curtin RJ, Thomas JD, Tang WH. Right ventricular response to intensive medical therapy in advanced decompensated heart failure. Circ Heart Fail 2010;3:340-6. https://doi.org/10.1161/CIRCHEARTFAILURE.109.900134
  26. Puwanant S, Park M, Popovic ZB, Tang WH, Farha S, George D, Sharp J, Puntawangkoon J, Loyd JE, Erzurum SC, Thomas JD. Ventricular geometry, strain, and rotational mechanics in pulmonary hypertension. Circulation 2010;121:259-66. https://doi.org/10.1161/CIRCULATIONAHA.108.844340
  27. Cresci SG, Goldstein JA. Hemodynamic manifestations of ischemic right heart dysfunction. Cathet Cardiovasc Diagn 1992;27:28-33; discussion 33-4. https://doi.org/10.1002/ccd.1810270107
  28. Popovic ZB, Grimm RA, Ahmad A, Agler D, Favia M, Dan G, Lim P, Casas F, Greenberg NL, Thomas JD. Longitudinal rotation: an unrecognised motion pattern in patients with dilated cardiomyopathy. Heart 2008;94:e11. https://doi.org/10.1136/hrt.2007.122192
  29. Motoki H, Dahiya A, Bhargava M, Wazni OM, Saliba WI, Marwick TH, Klein AL. Assessment of left atrial mechanics in patients with atrial fibrillation: comparison between two-dimensional speckle-based strain and velocity vector imaging. J Am Soc Echocardiogr 2012;25:428-35. https://doi.org/10.1016/j.echo.2011.12.020

피인용 문헌

  1. Club 35 EACVI web spotlight: comments on right ventricle assessment in the new echocardiography recommendations vol.16, pp.11, 2014, https://doi.org/10.1093/ehjci/jev169
  2. Multimodality Evaluation of the Right Ventricle: An Updated Review : Evaluation of the right ventricle vol.38, pp.12, 2014, https://doi.org/10.1002/clc.22443
  3. How best to assess right ventricular function by echocardiography vol.25, pp.8, 2014, https://doi.org/10.1017/s1047951115002255
  4. Echocardiographic Assessment of Cardiotoxic Effects of Cancer Therapy vol.18, pp.10, 2016, https://doi.org/10.1007/s11886-016-0776-z
  5. Association of Decreased Right Ventricular Strain with Worse Survival in Non-Acute Coronary Syndrome Angina vol.29, pp.4, 2016, https://doi.org/10.1016/j.echo.2015.11.015
  6. Right ventricular longitudinal strain for risk stratification in low-flow, low-gradient aortic stenosis with low ejection fraction vol.102, pp.7, 2014, https://doi.org/10.1136/heartjnl-2015-308309
  7. Right heart function deteriorates in breast cancer patients undergoing anthracycline-based chemotherapy vol.3, pp.3, 2014, https://doi.org/10.1530/erp-16-0020
  8. Prospective validation of right ventricular role in primary graft dysfunction after lung transplantation vol.48, pp.6, 2014, https://doi.org/10.1183/13993003.02136-2015
  9. Normal range and usefulness of right ventricular systolic strain to detect subtle right ventricular systolic abnormalities in patients with heart failure: a multicentre study vol.18, pp.2, 2014, https://doi.org/10.1093/ehjci/jew011
  10. The emerging role of Cardiovascular Magnetic Resonance in the evaluation of hypertensive heart disease vol.17, pp.None, 2017, https://doi.org/10.1186/s12872-017-0556-8
  11. Prognostic Value of Right Ventricular Dysfunction in Heart Failure With Reduced Ejection Fraction : Superiority of Longitudinal Strain Over Tricuspid Annular Plane Systolic Excursion vol.11, pp.1, 2014, https://doi.org/10.1161/circimaging.117.006894
  12. Evaluation of the right ventricle by echocardiography: particularities and major challenges vol.16, pp.4, 2018, https://doi.org/10.1080/14779072.2018.1449646
  13. An Optical Method for the In-Vivo Characterization of the Biomechanical Response of the Right Ventricle vol.8, pp.None, 2014, https://doi.org/10.1038/s41598-018-25223-z
  14. Prognostic Implications of Right Ventricular Free Wall Longitudinal Strain in Patients With Significant Functional Tricuspid Regurgitation vol.12, pp.3, 2014, https://doi.org/10.1161/circimaging.118.008666
  15. Right Ventricular Function in Left Heart Disease vol.23, pp.1, 2014, https://doi.org/10.1177/1089253218799345
  16. The utility of transthoracic echocardiographic measures of right ventricular systolic function in a lung resection cohort vol.6, pp.1, 2019, https://doi.org/10.1530/erp-18-0067
  17. More than 10 years of speckle tracking echocardiography: Still a novel technique or a definite tool for clinical practice? vol.36, pp.5, 2014, https://doi.org/10.1111/echo.14339
  18. Subjective right ventricle assessment by echo qualified intensive care specialists: assessing agreement with objective measures vol.23, pp.None, 2019, https://doi.org/10.1186/s13054-019-2375-z
  19. New electromechanical substrate abnormalities in high-risk patients with Brugada syndrome vol.17, pp.4, 2014, https://doi.org/10.1016/j.hrthm.2019.11.019
  20. Right ventricular free wall longitudinal strain and strain rate quantification with cardiovascular magnetic resonance based tissue tracking vol.36, pp.10, 2014, https://doi.org/10.1007/s10554-020-01895-5
  21. Quantitative assessment of contractile reserve of systemic right ventricle in post‐Senning children: Incorporating speckle‐tracking strain and dobutamine stress echocardiography vol.37, pp.12, 2014, https://doi.org/10.1111/echo.14924
  22. Cardiovascular magnetic resonance feature tracking for characterization of patients with heart failure with preserved ejection fraction: correlation of global longitudinal strain with invasive diastol vol.22, pp.1, 2020, https://doi.org/10.1186/s12968-020-00636-w
  23. Immediate and short-term outcomes of percutaneous transvenous mitral commissurotomy on global and regional right ventricular strain by speckle-tracking echocardiography vol.7, pp.2, 2021, https://doi.org/10.4103/ijca.ijca_5_21
  24. Forgotten No More-The Role of Right Ventricular Dysfunction in Heart Failure with Reduced Ejection Fraction: An Echocardiographic Perspective vol.11, pp.3, 2014, https://doi.org/10.3390/diagnostics11030548
  25. Ventricular systolic dysfunction with and without altered myocardial contractility: Clinical value of echocardiography for diagnosis and therapeutic decision-making vol.327, pp.None, 2014, https://doi.org/10.1016/j.ijcard.2020.11.068
  26. Right ventricular free wall strain in acutely decompensated heart failure patients with ischemic and non‐ischemic cardiomyopathy vol.38, pp.10, 2014, https://doi.org/10.1111/echo.15205
  27. Right Ventricular Structure and Function in Young Adults Born Preterm at Very Low Birth Weight vol.10, pp.21, 2021, https://doi.org/10.3390/jcm10214864