DOI QR코드

DOI QR Code

Neuroprotective Effect of Steamed and Fermented Codonopsis lanceolata

  • Weon, Jin Bae (Department of Medical Biomaterials Engineering, College of Biomedical Science) ;
  • Yun, Bo-Ra (Department of Medical Biomaterials Engineering, College of Biomedical Science) ;
  • Lee, Jiwoo (Department of Medical Biomaterials Engineering, College of Biomedical Science) ;
  • Eom, Min Rye (Department of Medical Biomaterials Engineering, College of Biomedical Science) ;
  • Ko, Hyun-Jeong (Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University) ;
  • Lee, Hyeon Yong (Department of Teaics, Seowon University) ;
  • Park, Dong-Sik (Department of Agrofood Resources, Functional food & Nutrition Division) ;
  • Chung, Hee-Chul (Newtree CO., LTD.) ;
  • Chung, Jae Youn (Newtree CO., LTD.) ;
  • Ma, Choong Je (Department of Medical Biomaterials Engineering, College of Biomedical Science)
  • Received : 2014.02.17
  • Accepted : 2014.05.08
  • Published : 2014.05.31

Abstract

Codonopsis lanceolata has been used as an herbal medicine for several lung inflammatory diseases, such as asthma, tonsillitis, and pharyngitis. Previously, we showed the neuroprotective effect of steamed and fermented C. lanceolata (SFC) in vitro and in vivo. In the current study, the treatment of HT22 cells with SFC decreased glutamate-induced cell death, suggesting that SFC protected HT22 cells from glutamate-induced cytotoxicity. Based on these, we sought to elucidate the mechanisms of the neuroprotective effect of SFC by measuring the oxidative stress parameters and the expression of Bax and caspase-3 in HT22 cells. SFC reduced contents of ROS, $Ca^{2+}$ and NO. Moreover, SFC restored contents of glutathione and glutathione reductase as well as inhibited Bax and caspase-3 activity in HT22 cells. These results indicate that steamed and fermented C. lanceolata (SFC) extract protected HT22 cells by anti-oxidative effect and inhibition of the expression of Bax and caspase-3.

Keywords

References

  1. Albrecht, P., Lewerenz, J., Dittmer, S., Noack, R., Maher, P. and Methner, A. (2010) Mechanisms of oxidative glutamate toxicity: the glutamate/cystine antiporter system xc- as a neuroprotective drug target. CNS Neurol. Disord. Drug Targets 9, 373-382. https://doi.org/10.2174/187152710791292567
  2. Antonsson, B. (2004) Mitochondria and the Bcl-2 family proteins in apoptosis signaling pathways. Mol. Cell. Biochem. 256, 141-155. https://doi.org/10.1023/B:MCBI.0000009865.70898.36
  3. Ban, J. Y., Nguyen, H. T., Lee, H. J., Cho, S. O., Ju, H. S., Kim, J. Y., Bae, K., Song, K. S. and Seong, Y. H. (2008) Neuroprotective properties of gallic acid from Sanguisorbae radix on amyloid beta protein (25--35)-induced toxicity in cultured rat cortical neurons. Biol. Pharm. Bull. 31, 149-153. https://doi.org/10.1248/bpb.31.149
  4. Butterfield, D. A. and Pocernich, C. B. (2003) The glutamatergic system and Alzheimer's disease: therapeutic implications. CNS Drugs 17, 641-652. https://doi.org/10.2165/00023210-200317090-00004
  5. Byeon, S. E., Choi, W. S., Hong, E. K., Lee, J., Rhee, M. H., Park, H. J. and Cho, J. Y. (2009) Inhibitory effect of saponin fraction from Codonopsis lanceolata on immune cell-mediated inflammatory responses. Arch. Pharm. Res. 32, 813-822. https://doi.org/10.1007/s12272-009-1601-7
  6. Cho, J. Y., Kim, H. S., Kim, D. H., Yan, J. J., Suh, H. W. and Song, D. K. (2005) Inhibitory effects of long-term administration of ferulic acid on astrocyte activation induced by intracerebroventricular injection of beta-amyloid peptide (1-42) in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 901-907. https://doi.org/10.1016/j.pnpbp.2005.04.022
  7. Choi, D. W. (1985) Glutamate neurotoxicity in cortical cell cultures is calcium dependent. Neurosci. Lett. 58, 293-297. https://doi.org/10.1016/0304-3940(85)90069-2
  8. Choi, D. W. (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623-634. https://doi.org/10.1016/0896-6273(88)90162-6
  9. Conrad, M. and Sato, H. (2012) The oxidative stress-inducible cystine/ glutamate antiporter, system x(c)(-): cystine supplier and beyond. Amino Acids 42, 231-246. https://doi.org/10.1007/s00726-011-0867-5
  10. Coyle, J. T. and Puttfarcken, P. (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262, 689-695. https://doi.org/10.1126/science.7901908
  11. Crapper, D. R. and DeBoni, U. (1978) Brain aging and Alzheimer's disease. Can. Psychiatr. Assoc. j. 23, 229-233.
  12. Deckwerth, T. L., Elliot, J. L., Knudson, C. M., Johnson, Jr. E. M., Snider, W. D. and Korsmeyer, S. J. (1996) Bax is required for neuronal death after trophic factor deprivation and during development. Neuron 17, 401-411. https://doi.org/10.1016/S0896-6273(00)80173-7
  13. Duchen, M. (2000) Mitochondria and calcium: from cell signaling to cell death. J. Physiol. 529, 57-68. https://doi.org/10.1111/j.1469-7793.2000.00057.x
  14. Epand, R. F., Martinou, J. C., Montessuit, S., Epand, R. M. and Yip, C.M. (2002) Direct evidence for membrane pore formation by the apoptotic protein Bax. Biochem. Biophys. Res. Commun. 298, 744-749. https://doi.org/10.1016/S0006-291X(02)02544-5
  15. Fukui, M., Song, J. H., Choi, J., Choi, H. J. and Zhu, B. T. (2009) Mechanism of glutamate-induced neurotoxicity in HT22 mouse hippocampal cells. Eur. J. Pharmacol. 617, 1-11. https://doi.org/10.1016/j.ejphar.2009.06.059
  16. Gan, M., Lin, S., Zhang, Y., Zi, J., Song, W., Hu, J., Chen, N., Wang, L., Wang, X. and Shi, J. (2011) Liposoluble constituents from Iodes cirrhosa and their neuroprotective and potassium channel-blocking activity. Zhongguo Zhong Yao Za Zhi 36, 1183-1189.
  17. Garthwaite, J. (1991) Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci. 14, 60-67. https://doi.org/10.1016/0166-2236(91)90022-M
  18. Ghayur, M. N., Kazim, S. F., Rasheed, H., Khalid, A., Jumani, M. I., Choudhary, M. I. and Gilani, A. H. (2011) Identification of antiplatelet and acetylcholinesterase inhibitory constituents in betel nut. Zhong Xi Yi Jie He Xue Bao 9, 619-625. https://doi.org/10.3736/jcim20110607
  19. Gross, A., McDonnell, J. M. and Korsmeyer, J. S. (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899-1911. https://doi.org/10.1101/gad.13.15.1899
  20. He, X., Zou, Y., Yoon, W. B., Park, S. J., Park, D. S. and Ahn, J. (2011) Effects of probiotic fermentation on the enhancement of biological and pharmacological activities of Codonopsis lanceolata extracted by high pressure treatment. J. Biosci. Bioeng. 112, 188-193. https://doi.org/10.1016/j.jbiosc.2011.04.003
  21. Jung, I. H., Jang, S. E., Joh, E. H., Chung, J., Han, M. J. and Kim, D. H. (2012) Lancemaside A isolated from Codonopsis lanceolata and its metabolite echinocystic acid ameliorate scopolamine-induced memory and learning deficits in mice. Phytomedicine 20, 84-88. https://doi.org/10.1016/j.phymed.2012.09.005
  22. Kane, D. J., Sarafian, T. A., Anton, R., Hahn, H., Gralla, E. B., Valentine, J. S., Ord, T. and Bredesen, D. E. (1993) Bcl-2 inhibition of neuronal death: decreased generation of reactive oxygen species. Science 262, 1274-1277. https://doi.org/10.1126/science.8235659
  23. Knowles, R. G., Palacios, M., Palmer, R. M. J. and Moncada, S. (1989) Formation of nitric oxide from L-arginnie in central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase. Proc. Natl. Acad. Sci. U.S.A. 86, 5159-5162. https://doi.org/10.1073/pnas.86.13.5159
  24. Lafon-Cazal, M., Culcasi, M., Gaven, F., Pietri, S. and Bockaert, J. (1993) Nitric oxide, superoxide and peroxynitrite: putative mediators of NMDA-induced cell death in cerebellar granule cells. Neuro pharmacology 32, 1259-1266.
  25. Lewerenz, J., Klein, M. and Methner, A. (2006) Cooperative action of glutamate transporters and cystine/glutamate antiporter system X-c(-) protects from oxidative glutamate toxicity. J. Neurochem. 98, 916-925. https://doi.org/10.1111/j.1471-4159.2006.03921.x
  26. Li, J. P., Liang, Z. M. and Yuan, Z. (2007) Triterpenoid saponins and anti-inflammatory activity of Codonopsis lanceolata. Pharmazie. 62, 463-466.
  27. Liu, J. Li, L. Suo, W. Z. (2009) HT22 hippocampal neuronal cell line possesses functional cholinergic properties. Life Sci. 84, 267-271. https://doi.org/10.1016/j.lfs.2008.12.008
  28. Ly, J. D., Grubb, D. R. and Lawen, A. (2003) The mitochondrial membrane potential ($\Psi$) in apoptosis; an update. Apoptosis 8, 115-128. https://doi.org/10.1023/A:1022945107762
  29. Moncada, S. and Erusalimsky, J. D. (2002) Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat. Rev. Mol. Cell Biol. 3, 214-220. https://doi.org/10.1038/nrm762
  30. Murphy, T. H., Miyamoto, M., Sastre, A., Schnaar, R. L. and Coyle, J. T. (1989) Glutamate toxicity in neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2, 1547-1558. https://doi.org/10.1016/0896-6273(89)90043-3
  31. Nutt, L. K., Pataer, A., Pahler, J., Fang, B., Roth, J., McConkey, D. J. and Swisher, S. G. (2002) Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial $Ca^{2+}$ stores. J. Biol. Chem. 277, 9219-9225. https://doi.org/10.1074/jbc.M106817200
  32. Ola, M. S., Nawaz, M. and Ahsan, H. (2011) Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol. Cell. Biochem. 351, 41-58. https://doi.org/10.1007/s11010-010-0709-x
  33. Randall, R. D. and Thayer, S. A. (1992) Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J. Neurosci. 12, 1882-1895.
  34. Reynolds, I. J. and Hastings, T. G. (1995) Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J. Neurosci. 15, 3318-3327.
  35. Ryu, H. S. (2009) Effect of Codonopsis lanceolatae Extracts on mouse IL-2, IFN-, IL-10 cytokine production by peritoneal macrophage and the ratio of IFN-, IL-10 cytokine. Kor. J. Food Nutr. 22, 69-74.
  36. Satoh, T., Enokido, Y., Kubo, T., Yamada, M. and Hatanaka, H. (1998) Oxygen toxicity induces apoptosis in neuronal cells. Cell. Mol. Neurobiol. 18, 649-666. https://doi.org/10.1023/A:1020269802315
  37. Suzuki, Y. S., Forman, H. J., Sevanian, A. (1997) Oxidants as stimulators of signal transduction. Free Radic. Biol. Med. 22, 269-285. https://doi.org/10.1016/S0891-5849(96)00275-4
  38. Tan, S., Sagara, Y., Liu, Y., Maher, P. and Schubert, D. (1998a) The regulation of reactive oxygen species production during programmed cell death. J. Cell. Biol. 141, 1423-1432. https://doi.org/10.1083/jcb.141.6.1423
  39. Tan, S., Wood, M. and Maher, P. (1998b) Oxidative stress induces a form of programmed cell death with characteristics of both apoptosis and necrosis in neuronal cells. J. Neurochem. 71, 95-105.
  40. Tanovic, A. and Alfaro, V. (2006) Glutamate-related excitotoxicity neuroprotection with memantine, an uncompetitive antagonist of NMDA-glutamate receptor, in Alzheimer's disease and vascular dementia. Rev. Neurol. 42, 607-616.
  41. Ushijima, M., Komoto, N., Sugizono, Y., Mizuno, I., Sumihiro, M., Ichikawa, M., Hayama, M., Kawahara, N., Nakane, T., Shirota, O., Sekita, S. and Kuroyanagi, M. (2008) Triterpene glycosides from the roots of Codonopsis lanceolata. Chem. Pharm. Bull. 56, 308-314. https://doi.org/10.1248/cpb.56.308
  42. Wang, G. J., Randall, R. D. and Thayer, S. A. (1994) Glutamate-induced intracellular acidification of cultured hippocampal neurons demonstrates altered energy metabolism resulting from $Ca^{2+}$ loads. J. Neurophysiol. 72, 2563-2569.
  43. Weon, J. B., Kim, C. Y., Yang, H. J. and Ma, C. J. (2012) Neuroprotective compounds isolated from Cynanchum paniculatum. Arch. Pharm. Res. 35, 617-621. https://doi.org/10.1007/s12272-012-0404-4
  44. Weon, J. B., Yun, B.- R., Lee, J., Eom, M. R., Kim, J. S., Lee, H. Y., Park, D. S., Chung, H. C., Chung, J. Y. and Ma, C. J. (2013) Effect of Codonopsis lanceolata with steamed and fermented process on scopolamine-Induced memory impairment in mice. Biomol. Ther. 21, 405-410. https://doi.org/10.4062/biomolther.2013.055
  45. Wyllie, A. H., Kerr, J. F. and Currie, A. R. (1980) Cell death: the significance of apoptosis. Int. Rev. Cytol. 68, 251-306. https://doi.org/10.1016/S0074-7696(08)62312-8
  46. Xiang, J., Chao, D. T. and Korsmeyer, S. J. (1996) Bax-induced cell death may not require interleukin 1 beta-converting enzyme-like proteases. Proc. Natl. Acad. Sci. U.S.A. 93, 14559-14563. https://doi.org/10.1073/pnas.93.25.14559
  47. Xu, J., Xilouri, M., Bruban, J., Shioi, J., Shao, Z., Papazoglou, I., Vekrellis, K. and Robakis, N. K. (2011) Extracellular progranulin protects cortical neurons from toxic insults by activating survival signaling. Neurobiol. Aging 32, 2326.e5-2326.e16
  48. Yang, H. J., Weon, J. B., Lee, B. and Ma, C. J. (2011) The alteration of components in the fermented Hwangryunhaedok-tang and its neuroprotective activity. Pharmacogn. Mag. 7, 207-212. https://doi.org/10.4103/0973-1296.84234
  49. Yongxu, S. and Jicheng, L. (2008) Structural characterization of a water- soluble polysaccharide from the roots of Codonopsis pilosula and its immunity activity. Int. J. Biol. Macromol. 43, 279-282. https://doi.org/10.1016/j.ijbiomac.2008.06.009
  50. Zhang, Y. M. and Bhavnani, B. R. (2005) Glutamate-induced apoptosis in primary cortical neurons is inhibited by equine estrogens via down-regulation of caspase-3 and prevention of mitochondrial cytochrome c release. BMC Neurosci. 6, 13. https://doi.org/10.1186/1471-2202-6-13

Cited by

  1. Using Drugs as Molecular Probes: A Computational Chemical Biology Approach in Neurodegenerative Diseases vol.56, pp.2, 2017, https://doi.org/10.3233/JAD-160222
  2. Characterization, quantitation and similarity evaluation of Codonopsis lanceolata from different regions in China by HPLC-Q-TQF-MS and chemometrics vol.62, 2017, https://doi.org/10.1016/j.jfca.2017.05.009
  3. A Review of Fermented Foods with Beneficial Effects on Brain and Cognitive Function vol.21, pp.4, 2016, https://doi.org/10.3746/pnf.2016.21.4.297
  4. Anti-Tumor Effect of Steamed Codonopsis lanceolata in H22 Tumor-Bearing Mice and Its Possible Mechanism vol.7, pp.10, 2015, https://doi.org/10.3390/nu7105395
  5. Effect of elicited by methyl jasmonate on the saponin contents of Codonopsis lanceolata vol.42, pp.3, 2015, https://doi.org/10.5010/JPB.2015.42.3.265
  6. Influence of Plant Growth Retardants on Quality of Codonopsis Radix vol.22, pp.10, 2017, https://doi.org/10.3390/molecules22101655
  7. Enhancement of Chlorophyll a Production from Marine Spirulina maxima by an Optimized Ultrasonic Extraction Process vol.8, pp.1, 2017, https://doi.org/10.3390/app8010026
  8. Neuroprotective effects of Magnoliae Flos extract in mouse hippocampal neuronal cells vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-28055-z
  9. Screening of Active Components and Key Targets of Radix Codonopsis in the Treatment of Gastric Cancer vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/6056636
  10. Neuroprotective effects of an in vitro BBB permeable phenoxythiophene sulfonamide small molecule in glutamate‑induced oxidative injury vol.23, pp.1, 2021, https://doi.org/10.3892/etm.2021.11002