DOI QR코드

DOI QR Code

Graphene Oxide (GO) Layered Structure Ion Exchange Membrane Application for Vanadium Redox Flow Battery (VRB) System Study

산화그라핀 (Graphene Oxide, GO)이 코팅된 양이온 교환막을 용한 바나듐 레독스 흐름 전지 (Vanadium Redox Flow attery, VRB) 시스템에 관한 연구

  • Lee, Kwan Ju (Department of Environmental Engineering, College of Science & Engineering, Sangji University) ;
  • Chu, Young Hwan (Department of New Energy.Resource Engineering, College of Science & Engineering, Sangji University)
  • 이관주 (상지대학교, 환경공학과) ;
  • 주영환 (상지대학교, 신에너지.원공학과)
  • Received : 2013.10.22
  • Accepted : 2014.01.22
  • Published : 2014.05.31

Abstract

Cation exchange membrane (Nafion) was modified to reduce the vanadium ion permeation through the membrane and to increase the vanadium redox flow battery (VRB) system performance by coating the graphene oxide (GO) which has nano-plate like morphology. Modified membrane properties were studied by measuring the ion exchange capacity (I.E.C), water uptake and proton conductivity. The thickness of the coated layer on the surface of the Nafion membrane was observed as $0.93{\mu}m$ by SEM. Proton conductivity and vanadium ion permeability of the modified membrane were decreased to 27% and 25% compared to that of the commercial Nafion membrane respectively. VRB single cell performance test was performed to compare the system performance of the VRB applied with commercial Nafion membrane and modified membrane. VRB system applied with modified membrane showed higher coulombic efficiency and energy efficiency than the VRB system applied with the commercial Nafion membrane due to the reduction of the vanadium ion permeation. From these result, we could suggest that the membrane modification by coating the GO on the surface of the Nafion membrane could be one of the promising strategies to reduce the vanadium ion permeation and to increase the VRB system performance effectively.

바나듐 레독스 흐름 전지 (Vanadium redox flow battery, VRB) 시스템 운전 중 양이온 교환막을 통한 바나듐이온의 투과로 인하여 성능이 저하되는 문제점을 보완하기 위해 판상형태의 탄소물질인 산화그라핀 (Graphene Oxide, GO)을 기존에 사용하였던 양이온 교환막인 Nafion 양이온 교환막 표면에 열압착 방식으로 코팅하여 양이온 교환막 개선 및 VRB 성능 향상을 도모하였다. 개선된 양이온 교환막의 물리화학적 특성분석을 위하여 SEM (Scanning Electron Microscopy)분석, 이온 교환 용량, 수분 흡수 및 수소이온 전도도를 측정하였다. 산화그라핀층을 코팅한 결과, SEM 분석을 통해 양이온 교환막 표면에 약 $0.93{\mu}m$의 산화그라핀층이 형성된 것을 확인할 수 있었다. 산화그라핀을 코팅하여 개선된 양이온 교환막의 수소이온 전도도 측정 결과, 상용 양이온 교환막의 27% 수준으로 감소하였음을 확인하였으며, 동시에 바나듐이온 투과실험을 실시한 결과, 개선된 양이온 교환막의 바나듐이온 투과도가 기존 상용 양이온 교환막의 25% 이하 수준으로 감소하였음을 확인할 수 있었다. VRB 단위전지 성능실험을 실시하여 충-방전 특성을 분석한 결과, 산화그라핀을 코팅하여 개선된 양이온 교환막을 VRB 시스템에 적용하였을 경우, 바나듐이온의 투과도 감소로 인하여 쿨롱효율이 증가하였음을 확인할 수 있었고, 그로 인하여 전체적인 에너지효율이 상용막을 적용하였을 때 보다 증가하였음을 확인할 수 있었다. 따라서, 본 연구를 통해 양이온 교환막 표면에 판상형태의 탄소물질인 산화그라핀을 코팅하는 방법이 바나듐이온 투과도를 저하시키고 VRB의 시스템성능을 향상시킬 수 있는 효과적인 방법임을 제시할 수 있었다.

Keywords

References

  1. E. Sum, M. Skyllas-Kazacos, 'A Study of the V(II)/ V(III) Redox Couple for Redox Flow Cell Applications', J. Power Sources, 15, 179-190 (1985). https://doi.org/10.1016/0378-7753(85)80071-9
  2. E. Sum, M. Rychcik, M. Skyllas-Kazacos, 'Investigation of the V(V)/V(IV) syatem for use in the positive half-cell of a redox battery', J. Power Sources, 16, 85-95 (1985). https://doi.org/10.1016/0378-7753(85)80082-3
  3. M. Skyllas-Kazacos, M. Rychcik, R. Robins, 'New All-Vanadium redox flow cell', J. Electrochem. Soc., 133, 1057 (1986). https://doi.org/10.1149/1.2108706
  4. M. Skyllas-Kazacos, M. Rychcik, R. Robins, 'Allvanadium redox battery', US Patent, 4786, 567 (1986).
  5. M. Gattrell, J. Qian, C. Stewart, P. Graham, B. MacDougall, 'The electrochemical reduction of $VO_2\;^+$ in acidic solution at high overpotentials', Electrochimica Acta, 51, 395 (2005). https://doi.org/10.1016/j.electacta.2005.05.001
  6. T. Mohammadi, S.C. Chieng, M. Skyllas-Kazacos, 'Water transport study across commercial ion exchange membranes in the vanadium redox flow battery', J. Membr. Sci., 133, 151 (1997). https://doi.org/10.1016/S0376-7388(97)00092-6
  7. T. Mohammadi, M. Skyllas-Kazacos, 'Evaluation of chemical stability of some membranes in the vanadium solution', J. Applied Electrochemistry, 27, 153 (1997). https://doi.org/10.1023/A:1018495722379
  8. B. Schwenzer, J. Zhang, S. Kim, L. Li, J. Liu, Z. Yang, 'Membrane development for vanadium redox flow batteries', ChemSusChem, 4, 1388 (2011). https://doi.org/10.1002/cssc.201100068
  9. S. Kim, J. Yan, B. Schwenzer, J. Zhang, Liyu Li, J. Liu, Z. Yang, M. A. Hickner, 'Cycling performance and efficiency of sulfonated poly (sulfone) membranes in vanadium redox flow batteries', Electrochem. Communi., 12, 1650 (2010). https://doi.org/10.1016/j.elecom.2010.09.018
  10. S. Kim, T. Tighe, B. Schwenzer, J. Yan, J. Zhang, J. Liu, Z. Yang, M. A. Hickner, 'Chemical and mechanical degradation of sulfonated poly (sulfone) mem-branes in vanadium redox flow batteries', J. Appl. Electrochem., 41, 1201 (2011). https://doi.org/10.1007/s10800-011-0313-0
  11. Z. Mai, H. Zhang, X. Li, C. Bi, H. Dai, 'Sulfonated poly (tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application', J. Power Sources, 196, 482 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.028
  12. D. Chen, S. Wang, M. Xiao, Y. Meng, 'Preparation and properties of sulfonated poly (fluorenyl ether ketone) membrane for vanadium redox flow battery application', J. Power Sources, 195, 2089 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.010
  13. D. Chen, S. Wang, M. Xiao, Y. Meng, 'Synthesis and properties of novel sulfonated poly (arylene ether sulfone) ionomers for vanadium redox flow battery', Energy Convers., Manage., 51, 2816 (2010). https://doi.org/10.1016/j.enconman.2010.06.019
  14. D. Chen, S. Wang, M. Xiao, Y. Meng, 'Synthesis and characterization of novel sulfonated poly(arylene thioether) ionomers for vanadium redox flow battery applications', Energy & Environ. Sci., 3, 622 (2010). https://doi.org/10.1039/b917117g
  15. Xinbing Chen, Pei Chen, Zhongwei An, Kangcheng Chen, Kenichi Okamoto 'Crosslinked sulfonated poly (arylene ether ketone) membranes bearing quinoxaline and acid-base complex cross-linkages for fuel cell applications', J. Power Sources, 196, 1694 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.039
  16. Dongyang Chen, Shuanjin Wang, Min Xiao, Dongmei Han, Yuezhong Meng, 'Synthesis of sulfonated poly (fluorenyl ether thioether ketone)s with bulky-block structure and its application in vanadium redox flow battery', Polymer, 52, 5312 (2011). https://doi.org/10.1016/j.polymer.2011.09.021
  17. Nanfang Wang, Sui Peng, Yanhua Li, Hongmei Wang, Suqin Liu, et al, 'Sulfonated poly (phthalazinone ether sulfone) membrane as a separator of vanadium redox flow battery', J. Solid State Electrochem., 16, 2169 (2012). https://doi.org/10.1007/s10008-012-1641-7
  18. Jingyu Xi, Zenghua Wu, Xinping Qiu, Liquan Chen, 'Nafion/$SiO_2$ hybrid membrane for vanadium redox flow battery', J. Power Sources, 166, 531 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.069
  19. William S, Hummers Jr, Richard E. Offeman., 'Preparation of graphitic oxide', J. American Chemical Society, 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
  20. Nethravathi C., Rajamathi Micheal, 'Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide', Carbon, 46, 1994 (2008). https://doi.org/10.1016/j.carbon.2008.08.013
  21. Dongyang Chen, Shuanjin Wang, Min Xiao, Dongmei Han, Yuezhong Meng, 'Sulfonated poly (fluorenyl ether ketone) membrane with embedded silica rich layer and enhanced proton selectivity for vanadium redox flow battery', J. Power Sources, 195, 7701 (2010). https://doi.org/10.1016/j.jpowsour.2010.05.026
  22. G. J. Hwang, H. Ohya, 'Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery', J. Membr. Sci., 120, 55 (1996). https://doi.org/10.1016/0376-7388(96)00135-4
  23. Y. Geng, S. J. Wang, and J. K. Kim, 'Preparation of graphite nanoplatelets and graphene sheets', J. Colloid and Interface Sci., 336, 592 (2009). https://doi.org/10.1016/j.jcis.2009.04.005
  24. Jianfeng Shen, Na Li, Min Shi, Yizhe Hu, Mingxin Ye, 'Covalent synthesis of organophilic chemically functionalized graphene sheets', J. Colloid and Interface Sci., 348, 377 (2010). https://doi.org/10.1016/j.jcis.2010.04.055