DOI QR코드

DOI QR Code

동해 남부 해역 퇴적물과 저층 해수 세균 군집 조성의 계절적 변화 연구

Seasonal Variation of Bacterial Community Composition in Sediments and Overlying Waters of the South East Sea

  • 최동한 (한국해양과학기술원 해양바이오연구부) ;
  • 김병모 ((주)네오엔비즈 환경안전연구소) ;
  • 최태섭 ((주)네오엔비즈 환경안전연구소) ;
  • 이정석 ((주)네오엔비즈 환경안전연구소) ;
  • 노재훈 (과학기술연합대학원대학교) ;
  • 박영규 (한국해양과학기술원 해양순환.기후연구부) ;
  • 강성길 (한국해양과학기술원 부설 선박해양플랜트연구소 해양CCS연구단)
  • Choi, Dong Han (Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology (KIOST)) ;
  • Gim, Byeong-Mo (NeoEnBiz Co. Daewoo Technopark) ;
  • Choi, Tae Seob (NeoEnBiz Co. Daewoo Technopark) ;
  • Lee, Jung-Suk (NeoEnBiz Co. Daewoo Technopark) ;
  • Noh, Jae Hoon (Korea University of Science and Technology) ;
  • Park, Young-Gyu (Ocean Circulation and Climate Research Division, Korea Institute of Ocean Science and Technology (KIOST)) ;
  • Kang, Seong-Gil (Offshore CCS Research Unit, Korea Research Institute of Ships and Ocean Engineering)
  • 투고 : 2014.02.18
  • 심사 : 2014.04.30
  • 발행 : 2014.05.28

초록

해양 환경에서 세균은 다양한 생지화학적 순환에 있어서 중요한 역할을 수행하고 있으며, 그들의 다양성에 대한 정보는 생태계에서 세균의 생지화학적 기능을 이해하는데 중요하다. 본 연구는 $CO_2$ 해양지중저장의 후보지인 동해 남부해역의 표층 퇴적물과 퇴적물 위의 저층 해수에서 최신 연구 기법인 pyrosequencing을 통하여 세균의 계절적 다양성을 분석함으로써, 동해 퇴적물 세균상의 특성을 이해하고자 하였다. 퇴적물에서는 대부분의 시기에 Gammaproteobacteria가 우점한 반면, 저층 해수에서는 Alphaproteobacteria가 우점하여 두 서식처에서 세균의 다양성은 큰 차이를 보였다. 또한 속 수준의 다양성 분석에서도 저층 해수에서는 대부분의 시기에 SAR11 그룹에 속하는 Pelagibacter가 가장 우점한 반면, 퇴적물 시료에서는 Gammaproteobacteria에 속하는 미동정 속이 가장 우점하였다. 그러나 두 서식처 모두에서 5% 이상의 점유율을 보인 속의 수는 10 속 미만으로 소수였으며, 낮은 점유율을 갖는 많은 종류의 세균들이 군집 내에 공존하는 공통적인 특성이 나타났다. 본 연구의 세균 다양성 연구는 동해 저층 해수 및 퇴적물의 세균 다양성에 대한 특성의 이해와 더불어 $CO_2$ 해양지중저장 사업의 진행에 따른 세균의 다양성 및 기능 변화에 대한 사전 자료 및 해역이용영향평가 배경 자료로 활용될 수 있을 것이다.

Bacteria play an important role in biogeochemical cycles in marine environments and their functional attributes in ecosystems depend primarily on species composition. In this study, seasonal variation of bacterial diversity was investigated by pyrosequencing of 16S rDNA in surface sediment and overlying seawater collected in the south East Sea, planned for the site of $CO_2$ sequestration by the carbon capture and storage (CCS) project. Gammaproteobacteria was dominant in the sediment in most seasons, whereas Alphaproteobacteria was a most dominant group in the overlying water. Thus, the bacterial diversity greatly differ between sediment and seawater samples. On the genus level, bacterial diversity between two habitats was also different. However, the number of genera found over 5% were less than 10 in both habitats and the bacterial community was composed of a number of diverse minor or rare genera. Elevation of $CO_2$ concentration during a $CO_2$ storage process, could result in change of bacterial diversity. Thus, this study will be very useful to access the effect of $CO_2$ on bacterial diversity and to predict functional change of the ecosystem during the process of CCS project.

키워드

참고문헌

  1. 이명숙, 홍순규, 이동훈, 김치경, 배경숙, 2001. 16S rRNA 유전자 분석에 의한 전남 순천만 갯벌의 세균 다양성. Kor J Microbiol 37: 137-144.
  2. 김보배, 조혜연, 현정호, 2010. 16S rRNA 유전자 분석방법을 이용한 동해 울릉분지 심해 퇴적물 내 고세균 군집 구조 및 다양성의 수직분포 특성연구. Ocean Polar Res 32: 309-319. https://doi.org/10.4217/OPR.2010.32.3.309
  3. Acosta-Martinez, V., S. Dowd, Y. Sun, and V. Allen, 2008. Tagencoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biol Biochem 40: 2762-2770. https://doi.org/10.1016/j.soilbio.2008.07.022
  4. Alonso-Saez, L., V. Balague, E. Sa, O. Sanchez, J.M. Gonzalez, J. Pinhassi, R. Massana, J. Pernthaler, C. Pedros-Alio, and J.M. Gasol, 2007. Seasonality in bacterial diversity in north-west Mediterranean coastal waters: Assessment through clone libraries, fingerprinting and FISH. FEMS Microbiol Ecol 60: 98-112. https://doi.org/10.1111/j.1574-6941.2006.00276.x
  5. Arrigo, K.R., 2005, Marine microorganisms and global nutrient cycles. Nature 437: 349-355. https://doi.org/10.1038/nature04159
  6. Chang, K.-I., W.J. Teague, S.J. Lyu, H.T. Perkins, D.-K. Lee, D.R. Watts, Y.-B. Kim, D.A. Mitchell, C.M. Lee, and K. Kim, 2004. Circulation and currents in the southwestern East/Japan Sea: Overview and review. Prog Oceanogr 61: 105-156. https://doi.org/10.1016/j.pocean.2004.06.005
  7. Chao, A., 1984. Non-parametric estimation of the number of classes in a population. Scand J Stat 11: 265-270.
  8. Chao, A. and S.-M. Lee, 1992. Estimating the number of classes via sample coverage. J Am Stat Assoc 87: 210-217. https://doi.org/10.1080/01621459.1992.10475194
  9. Chun, J., K.Y. Kim, J.-H. Lee, and Y. Choi, 2010. The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX Titanium pyrosequencer. BMC Microbiol 10: 101. https://doi.org/10.1186/1471-2180-10-101
  10. Fandino, L.B., L. Riemann, G.F. Steward, R.A. Long, and F. Azam, 2001. Variations in bacterial community structure during a dinoflagellate bloom analyzed by DGGE and 16S rDNA sequencing. Aquat Microb Ecol 23: 119-130. https://doi.org/10.3354/ame023119
  11. Feingersch, R., M.T. Suzuki, M. Shmoish, I. Sharon, G. Sabehi, F. Partensky, and O. Beja, 2010. Microbial community genomics in eastern Mediterranean Sea surface waters. ISME J4: 78-87. https://doi.org/10.1038/ismej.2009.92
  12. Galand, P.E., E.O. Casamayor, D.L. Kirchman, and C. Lovejoy, 2009. Ecology of the rare microbial biosphere of the Arctic Ocean. Proc Natl Acad Sci USA 106: 22427-22432. https://doi.org/10.1073/pnas.0908284106
  13. Gallagher, J.M., M.W. Carton, D.F. Eardly, and J.W. Patching, 2004. Spatio-temporal variability and diversity of water column prokaryotic communities in the eastern North Atlantic. FEMS Microbiol Ecol 47: 249-262. https://doi.org/10.1016/S0168-6496(03)00281-2
  14. Giovannoni, S.J., H.J. Tripp, S. Givan, M. Podar, K.L. Vergin, D. Baptista, L. Bibbs, J. Eads, T.H. Richardson, M. Noordewier, M.S. Rappe, J. Short, J.C. Carrington, and E.J. Mathur, 2005. Genome streamlining in a cosmopolitan oceanic bacterium. Science 309: 1242-1245. https://doi.org/10.1126/science.1114057
  15. Hamady, M., C. Lozupone, and R, Knight, 2010. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 4: 17-27. https://doi.org/10.1038/ismej.2009.97
  16. Henriksen, K., 1980. Measurement of in situ sites of nitrification in sediment. Microb Ecol 6: 329-337. https://doi.org/10.1007/BF02010495
  17. Huber, T., G. Faulkner, and P. Hugenholtz, 2004. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20: 2317-2319. https://doi.org/10.1093/bioinformatics/bth226
  18. Huse, S.M., J.A. Huber, and H.G. Morrison, 2007. Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8: R143. https://doi.org/10.1186/gb-2007-8-7-r143
  19. Jeon, Y.-S., J. Chun, and B.-S. Kim, 2013. Identification of household bacterial community and analysis of species shared with human microbiome. Curr Microbiol 67: 557-563. https://doi.org/10.1007/s00284-013-0401-y
  20. Kim, H.-C., 2006. A study of surface chlorophyll variation in the East Sea using ocean color remote sensing data. Ph. D. thesis, Seoul National University. pp 121.
  21. Knutzen, J., 1981. Effects of decreased pH on marine organisms. Mar. Pollut. Bull., Vol. 12, pp. 25-29. https://doi.org/10.1016/0025-326X(81)90136-3
  22. Kouridaki, I., P.N. Polymenakou, A. Tselepides, M. Mandalakis, K.L. Jr. Smith, 2010. Phylogenetic diversity of sediment bacteria from the deep Northeastern Pacific Ocean: a comparison with the deep Eastern Mediterranean Sea. Int Microbiol 13: 143-150.
  23. Lee, J.-W., K.K. Kwon, A. Aqil, H.-M. Oh, W. Kim, J.-J. Bahk, D.-H. Lee, and J.-H. Lee, 2013. Microbial community structures of methane hydrate-bearing sediments in the Ulleung Basin, East Sea of Korea. Mar Petrol Geol 47: 136-146. https://doi.org/10.1016/j.marpetgeo.2013.06.002
  24. Levin, L.A., R.J. Etter, M.A. Rex, A.J. Gooday, C.R. Smith, J. Pineda, C.T. Stuart, R.R. Hessler, and D. Pawson, 2001. Environmental influences on regional deep-sea species diversity. Ann Rev Ecol Syst 32: 51-93. https://doi.org/10.1146/annurev.ecolsys.32.081501.114002
  25. Minister of Land, Transport and Maritime Affairs (MLTM) 2012. Press Release by Marine Conservation Division of MLTM on 2012. 4. 4.
  26. Monastersky, R., 2013. Seabed scars raise questions over carbonstorate plan. Science 504: 339-340.
  27. Pedros-Alio, C., 2006. Marine microbial diversity: can it be determined? Trends Microbiol 14: 257-263. https://doi.org/10.1016/j.tim.2006.04.007
  28. Pham, V.D., K.T. Konstantinidis, T. Palden, and E.F. DeLong, 2008. Phylogenetic analyses of ribosomal DNA-containing bacterioplankton genome fragments from a 4000m vertical profile in the North Pacific Subtropical Gyre. Environ Microbiol 10: 2313-2330. https://doi.org/10.1111/j.1462-2920.2008.01657.x
  29. Pinhassi, J., M.M. Sala, H. Havskum, F. Peters, O. Guadayol, A. Malits, and C. Marrase, 2004. Changes in bacterioplankton composition under different phytoplankton regimens. Appl Environ Microbiol 70: 6753-6766. https://doi.org/10.1128/AEM.70.11.6753-6766.2004
  30. Polymenakou, P.N., S. Bertilsson, A. Tselepides, E.G. Stephanou, 2005. Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries. Microb Ecol 50: 447-462. https://doi.org/10.1007/s00248-005-0005-6
  31. Rex, M.A., R.J. Etter, J.S. Morris, J. Crouse, C.R. McClain, N.A. Johnson, C.T. Stuart, J.W. Deming, R. Thies, and R. Avery, 2006. Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Mar Ecol Progr Ser 317: 1-8. https://doi.org/10.3354/meps317001
  32. Riemann, L., G.F. Steward, and F. Azam, 2000. Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl Environ Microbiol 66: 578-587. https://doi.org/10.1128/AEM.66.2.578-587.2000
  33. Roesch, L.F.W., R.R. Fulthorpe, A. Riva, G. Casella, A.K.M. Hadwin, A.D. Kent, S.H. Daroub, F.A.O. Camargo, W.G. Farmerie, E.W. Triplett, 2007. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1: 283-290. https://doi.org/10.1038/ismej.2007.53
  34. Ruhl, H.A., J.A. Ellena, K.L. Smith Jr., 2008. Connections between climate, food limitation, and carbon cycling in abyssal sediment communities. Proc Natl Acad Sci USA 105: 17006-17011. https://doi.org/10.1073/pnas.0803898105
  35. Sapp, M., A. Wichels, and G. Gerdts, 2007. Impacts of cultivation of marine diatoms on the associated bacterial community. Appl Environ Microbiol 73: 3117-3120. https://doi.org/10.1128/AEM.02274-06
  36. Schloss, P.D., S.L. Westcott, T. Ryabin, J.R. Hall, M. Hartmann, E.B. Hollister, R.A. Lesniewsk, B.B. Oakley, D.H. Parks, C.J. Robbinson, J.W. Sahl, B. Stres, G.G. Thallinger, D.J. Van Horn, and C.F. Weber, 2009. Introducing mothur: Open-source, platformindependent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75: 7537-7541. https://doi.org/10.1128/AEM.01541-09
  37. Seibel, B.A. and P.J. Walsh, 2003. Biological impacts of deep sea carbon dioxide injection inferred from indices of physiological performance. J Exp Biol 206: 641-650. https://doi.org/10.1242/jeb.00141
  38. Teira, E., S. Martinez-Garcia, A. Calvo-Diaz, and X.A.G. Moran, 2010. Effects of inorganic and organic nutrient inputs on bacterioplankton community composition along a latitudinal transect in the Atlantic Ocean. Aquat Microb Ecol 60: 299-313. https://doi.org/10.3354/ame01435
  39. Tiedje, J.M., 1988. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. John Wiley & Sons, New York, pp 179-243.
  40. Torsvik, V., L. Ovreas, and T.F. Thingstad, 2002. Prokaryotic diversity-magnitude, dynamics and controlling factors. Science 296: 1064-1066. https://doi.org/10.1126/science.1071698
  41. Ward, B.B., 1986. Nitrification in marine environments. In: Prosser JI (ed) Nitrification. IRL Press, Oxford, England, pp 157-184.
  42. Whitman, W.B., D.C. Coleman, and W.J. Wiebe, 1998. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95: 6578-6583. https://doi.org/10.1073/pnas.95.12.6578
  43. Zinger, L., L.A. Amaral-Zettler, J.A. Fuhrman, M.C. Horner-Devine, S.M. Huse, D.B.M. Welch, J.B.H. Martiny, M. Sogin, A. Boetius, and A. Ramette, 2011. Global patterns of bacterial beta-diversity in seafloor and seawater Ecosystems. Plos One 9: e24570.
  44. Zhu, D., S.-H. Tanabe, C. Yang, W. Zhang, and J. Sun, 2013. Bacterial community composition of South China Sea sediments through pyrosequencing-based analysis of 16S rRNA genes. Plos One 8: e78501. https://doi.org/10.1371/journal.pone.0078501