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Abstract

In this paper, we develop Bayesian inference of the finite population mean with the
assumption of posterior linearity rather than normality of the superpopulation in the
presence of auxiliary information under the balanced loss function. We compare the
performance of the optimal Bayes estimator under the balanced loss function with ones
of the classical ratio estimator and the usual Bayes estimator in terms of the posterior
expected losses, risks and Bayes risks.
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1. Introduction

Consider a finite population U with units labeled 1, 2, . . . , N . Let yi denote the value of
a single characteristic attached to the unit i. The vector y = (y1, · · · , yN )T is the unknown
state of nature, and is assumed to belong to Θ = RN . A subset s of {1, 2, . . . , N} is called
a sample. Let n(s) denote the number of elements belonging to s. The set of all possible
samples is denoted by S. A design is a function p on S such that p(s) ∈ [0, 1] for all s ∈ S
and

∑
s∈S p(s) = 1. Given y ∈ Θ and s = {i1, · · · , in(s)} with 1 ≤ i1 < · · · < in(s) ≤ N , let

y(s) = {yi1 , · · · , yin(s)
}. One of the main objectives in sample surveys is to draw inference

about y or some function (real or vector valued) γ(y) of y on the basis of s and y(s). For
simplicity, only the case where p(s) > 0 if and only if n(s) = n will be considered. This
amounts to considering only fixed samples of size n. Here we will be concerned exclusively
with γ(y) = N−1

∑N
i=1 yi.

For most sample surveys, for every unit i in the finite population, information is available
for one or more auxiliary characteristics, characteristics other than the one of direct interest.
We consider the simplest situation when for every unit i in the population, value of a certain
auxiliary characteristic, say xi (> 0) is known (i = 1, 2, . . . , N). The classical estimator of

γ(y) in such cases is the ratio estimator γ̃R = N−1(
∑
i∈s yi/

∑
i∈s xi)

∑N
i=1 xi which seems

to incorporate the auxiliary information in a very natural manner.
Bayesian approach for finite population sampling was initiated by Hill (1968) and Ericson

(1969). Since then, a huge literature has grown in this area. Ericson (1988), Bolfarine and
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Zacks (1992), Ghosh and Meeden (1997), and Mukhopadhyay (2000) provide an up-to-date
account of Bayesian literature in finite population sampling. Goo and Kim (2012) studied
Bayesian inference in finite population sampling under measurement error model. In most
of the Bayesian literature in survey sampling, the loss is assumed to be squared error.

However, squared error loss is primarily designed to reflect precision of estimation. As
an alternative, we consider in this paper balanced loss functions (BLF) first introduced by
Zellner (1988, 1992). This loss is a weighted average of two losses, one the squared distance
between the parameters and their estimates, and the other the squared distance between
the estimates and the data. The latter reflects the goodness of fit of the estimates. Recently
Ghosh et al. (2008) considered Bayes estimations under random effects normal ANOVA
model setup under BLF.

Ghosh and Meeden (1986) considered empirical Bayes estimation of the finite population
mean assuming a normal superpopulation model. The normality assumption in the super-
population model was relaxed by Ghosh and Lahiri (1987). They assumed that the posterior
expectation of a finite population mean is a linear function of the sample observations. Such
a property is referred to as posterior linearity. This assumption is met when the superpop-
ulation is normal (see Ericson, 1969). There are other situations, however, when the same
assumption holds (see, e.g., Diaconis and Ylvisaker 1979; Goldstein 1975; Hartigan 1969).

In this paper, we consider a finite population sampling in the presence of auxiliary informa-
tion with the assumption of posterior linearity rather than normality of the superpopulation
under the balanced loss function. Our procedures are robust in the sense that the normality
assumption in the superpopulation model was relaxed by the posterior linearity. In Section
2, we derive the optimal Bayes estimator of the finite population mean under BLF. Also,
we compare the performance of the optimal Bayes estimator with ones of the classical ratio
estimator and the usual Bayes estimator under the squared error loss based on the posterior
expected losses. Moreover, we seek the dominant conditions for typical estimators by the
optimal Bayes estimator with respect to the risk function. In Section 3, we evaluate Bayes
risks of estimators analytically. Also, we examine the performance of the proposed estimator
with ones of the ratio estimator and the usual Bayes estimator in terms of Bayes risk through
the Monte Carlo simulation. In Section 4, we summarize results.

2. Bayes estimation under BLF

2.1. Model and assumptions

We consider the situation that there are two values associated with each unit i in the
population. One is a variable of interest yi that is unknown, the other is an auxiliary variable
xi that is a positive known quantity, to which yi can be expected to tend to be proportional.
Estimator can be improved by accounting for auxiliary information such as age, gender,
income and so on.

Let r denote the set of nonsample units. Recall that s denotes a sample. So U = s ∪ r.
Let ȳs =

∑
i∈s yi/n and ȳr =

∑
j∈r yj/(N − n) denote the means in the sample units and

nonsample units, respectively. Denote x̄s and x̄r similarly. Also denote ys = (yi, i ∈ s) and
xs = (xi, i ∈ s).

Our main objective is to estimate of the finite population mean γ(y) = N−1
∑N
i=1 yi. We

simply express a quantity of interest γ(y) as γ. Notice that γ = [nȳs + (N −n)ȳr]/N . It is a



Robust Bayesian inference in finite population sampling with auxiliary information 687

combinations of the known mean for the set s of sample units, say “seen”, plus the unknown
mean for the set r of nonsample units, say “unseen”. Estimation in finite population sampling
can be thought of as predicting the unseen from the seen. So, we can define a predictor γ̃
for γ as follows:

γ̃ =
1

N

[
nȳs + (N − n)˜̄yr

]
= fȳs + (1− f)β̃x̄r

where ˜̄yr is a predictor of ȳr and f = (N − n)/N is the finite population correction factor.
Estimating γ is then equivalent to predicting the value ȳr using x̄s, x̄r and ȳs.

We assume the superpopulation model without the normality as follows:

(i) yi|β
iid∼ pdf f(·|β) with E[yi|β] = βxi and V [yi|β] = µ2(β)xi, i = 1, . . . , N ;

(ii) β has prior π(β ) with E(β) = µ and V (β) = τ2;

(iii) 0 < σ2 = E[µ2(β)] <∞.

Our basic assumption is the posterior linearity, that is, the posterior expectation of β is a
linear function of the sample observations without the normality assumption. So

E
(
β|ys

)
=
∑
i∈s

aiyi + b, (2.1)

where ai’s and b are constants. From the work of Goldstein(1975), (2.1) leads to

E
(
β|ys

)
= aȳs + b, (2.2)

where a and b are constants. Hereafter we shall use (2.2) rather than (2.1). Then it follows
that

a =
τ2

τ2 + σ2/(nx̄s)
· 1

x̄s
=

nx̄s
M + nx̄s

· 1

x̄s
= (1−B)

1

x̄s
and b = Bµ,

where M = σ2/τ2 and B = M/(M + nx̄s).

2.2. Optimal Bayes estimator under the BLF

Before we find the optimal Bayes estimator of the finite population mean under the BLF,
we consider two typical estimators of γ. Notice that the classical ratio estimator of γ is given
by γ̃R = (1− f)ȳs + f(ȳs/x̄s)x̄r, since β̃ = ȳs/x̄s. The usual Bayes estimator of γ under the
squared error loss in the assumed model is given by

γ̃B = E[γ|ȳs]

= (1− f)ȳs + f
[
(1−B)

ȳs
x̄s

+Bβ
]
x̄r,

since β̃ is the posterior mean of β in this case.
Now, we consider the balanced loss function in our setup as follows:

LB(γ̃ , γ ) = w(ys − β̃xs)
′
(ys − β̃xs)/n+ (1− w)(γ̃ − γ)2. (2.3)
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Since γ̃ = N−1
[
nȳs+(N−n)β̃x̄r

]
, the balanced loss function given in (2.3) can be simplified

by

LB(γ̃ , γ ) = w
∑
i∈s

(yi − β̃xi)2/n+ (1− w)f2(ȳr − β̃x̄r)2. (2.4)

In practice, the choice of w reflects the relative weight which the experimenter wants to
assign to goodness of fit and precision of estimation.

To find the optimal Bayes estimator γ under the BLF, we consider the posterior expected
loss under LB(γ̃ , γ ) as follows:

ρ(γ̃, γ) = Eβ|ys

[
LB(γ̃ , γ )

]
=

w

n

[ ∑
i∈s

y2
i −

(∑
i∈s xiyi

)2∑
i∈s x

2
i

]
+ (1− w)f2v

+
w

n

(
β̃ −

∑
i∈s xiyi∑
i∈s x

2
i

)2

+ (1− w)f2x̄2
r( β̃ − β̄)2. (2.5)

where v is the posterior variance of ȳr and β̄ is the posterior mean of β. On completing the
square on β̃ from (2.5), we get

ρ(γ̃, γ) =
w

n

[∑
i∈s

y2
i −

(∑
i∈s xiyi

)2∑
i∈s x

2
i

]
+ (1− w)f2v

+w∗(1− w)f2x̄2
r

(
β̂ − β̄

)2
+ w1

(
β̃ − β̃∗

)2
, (2.6)

where β̂ =
∑
i∈s xiyi/

∑
i∈s x

2
i , w1 = w

∑
i∈s x

2
i /n+(1−w)f2x̄2

r and w∗ = (w/w1)
∑
i∈s x

2
i /n.

Here the estimator β̃∗ that minimizes the posterior expected value of the loss function is the
optimal Bayes estimator of β under the BLF, which is given by

β̃∗ = w∗β̂ + (1− w∗)β̄.

Hence the optimal Bayes estimator of the finite population mean γ under the BLF is given
by

γ̃BLF = (1− f)ȳs + f
[
w∗β̂ + (1− w∗)β̄

]
x̄r.

2.3. Comparisons of posterior expected losses relative to the BLF

Now we compare the optimal Bayes estimator γ̃BLF under the BLF with typical estimators,
γ̃R and γ̃B in terms of the posterior expected loss.

First, the posterior expected loss of each estimator of γ is obtained by substituting each
estimator for β̃ in (2.6). Hence, differences between posterior expected losses are given by

∆ρ(γ̃R, γ̃BLF ) = ρ(γ̃R, γ)− ρ(γ̃BLF , γ)

= ω1

( ȳs
x̄s
− β̃∗

)2

= ω1

[
(1− ω∗)(β̄ − β̂)−

( ȳs
x̄s
− β̂

)]2
≥ 0 (2.7)
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and

∆ρ(γ̃B , γ̃BLF ) = ρ(γ̃B , γ)− ρ(γ̃BLF , γ)

= ω1

(
β̄ − β̃∗

)2
= ω1

[
ω∗(β̄ − β̂)

]2 ≥ 0. (2.8)

Thus, relative losses of γ̃R and γ̃B over γ̃BLF , denoted by RL
(
γ̃R, γ̃BLF

)
and RL

(
γ̃B , γ̃BLF

)
,

are given by

RL
(
γ̃R, γ̃BLF

)
= ∆ρ(γ̃R, γ̃BLF )/ρ(γ̃BLF , γ)

=
ω1

[
(1− ω∗)(β̄ − β̂)− (ȳs/x̄s − β̂)

]2
υ2
a + ω∗(1− ω)f2x̄2

r(β̄ − β̂)2
, (2.9)

and

RL
(
γ̃B , γ̃BLF

)
= ∆ρ(γ̃B , γ̃BLF )/ρ(γ̃BLF , γ)

=
ω1

[
ω∗(β̄ − β̂)

]2
υ2
a + ω∗(1− ω)f2x̄2

r(β̄ − β̂)2
, (2.10)

where

υ2
a =

ω

n

[∑
i∈s

y2
i −

(∑
i∈s xiyi

)2∑
i∈s x

2
i

]
+ (1− ω)f2υ.

It is easy to show that the differences between posterior expected losses and relative losses
are positive except for ω is equal to zero from (2.7)-(2.10). This imply that the optimal
Bayes estimator γ̃BLF is superior to typical estimators in terms of the posterior expected
loss.

Table 2.1 Two population datasets used in the numerical study

Symbol
Counties 70 Cancer

Description
Counties in NC, SC and GA with fewer Counties in NC, SC, and GA with 1960
than 100,000 households in 1960 white female population<100,000

Source US Census
x : US Census
y : Mason and Mckay (1974)

x Number of households, 1960 Adult white female population, 1960

y
Population, excluding residents Breast cancer mortality,
of group quarters, 1970 1950-69 (white females)

N 304 301

We also compare the posterior expected loss through the numerical study using real data
to show the superiority of γ̃BLF . We consider the two datasets among the six real populations
that used in Royall and Cumberland (1981) for an empirical study of the ratio estimator
and estimates of its variance, described Table 2.1.

In the population named Counties 70, the variable of interest y is the 1970 population,
in thousands, in each of N = 304 counties in NC, SC and GA, and the auxiliary variable
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x is the number of households, in thousands, in each county in 1960. In the other case, the
Cancer data consists of the breast cancer mortality in 1950-1969 for white females and the
adult white female population in 1960, in thousands, of 301 counties in NC, SC and GA for
the auxiliary information.

Table 2.2 Relative losses for various of ω, µ and f in the Counties 70 population

f = 0.9 f = 0.95
µ ω = .00 .25 .50 .75 1.00 ω = .00 .25 .50 .75 1.00

0.5 6.017 0.788 0.458 0.026 0.220 11.873 2.896 0.476 0.002 0.533
1.0 5.717 0.308 0.082 0.132 0.041 8.870 1.019 0.393 0.119 0.187

RLR 2.0 2.654 0.368 0.129 0.156 1.133 3.184 1.606 0.225 0.035 0.964
3.5 0.119 0.021 0.001 0.001 0.053 0.301 0.039 0.072 0.017 0.089
5.0 0.692 0.172 0.002 0.162 0.150 1.107 0.147 0.009 0.178 0.001
0.5 0 0.805 1.253 1.869 16.173 0 0.151 1.292 6.400 70.838
1.0 0 0.949 2.191 3.710 8.611 0 0.605 1.773 4.373 23.779

RLB 2.0 0 0.530 0.638 1.165 5.971 0 0.174 0.370 3.694 17.883
3.5 0 0.286 0.291 0.064 0.883 0 0.155 0.183 0.714 0.523
5.0 0 0.052 0.444 0.662 1.591 0 0.667 0.022 0.573 2.167

Table 2.3 Relative losses for various of ω, µ and f in the Cancer population

f = 0.9 f = 0.95
µ ω = .00 .25 .50 .75 1.00 ω = .00 .25 .50 .75 1.00

0.5 3.919 1.247 0.003 0.144 0.032 6.241 0.957 1.018 0.003 0.099
1.0 2.239 0.271 0.150 0.022 0.171 3.693 0.435 0.337 0.548 0.108

RLR 2.0 0.505 0.197 0.003 0.068 0.002 1.058 0.294 0.201 0.087 0.138
3.5 0.003 0.002 0.030 0.034 0.295 0.042 0.001 0.094 0.012 0.001
5.0 1.069 0.072 0.073 0.067 0.017 1.662 0.520 0.009 0.067 0.644
0.5 0 0.127 1.001 1.862 5.404 0 0.146 0.287 2.372 10.599
1.0 0 0.162 0.411 0.784 3.213 0 0.237 0.356 1.158 4.416

RLB 2.0 0 0.025 0.922 0.968 0.875 0 0.283 0.143 0.654 0.904
3.5 0 0.018 0.023 0.039 0.106 0 0.014 0.265 0.266 0.101
5.0 0 0.146 0.202 0.197 1.199 0 0.108 1.065 0.631 1.368

For each of complete population, we find the population variance σ2 = (N−1)−1
∑N
i=1(yi−

β xi )2. To elicit the base prior π for β in the Counties 70, we use the Counties 60 population,
which is also one of the six real populations. In this Counties 60, x is the same as one in the
Counties 70, but y is the 1960 population of 304 counties in NC, SC and GA. The elicited τ2

is 0.5995. For the Cancer population, we put τ2 to be one because of no prior information
for the elicitation. We select 10% and 5% simple random samples without replacement from
each of the two populations. The sample sizes are n = 30 and n = 15, respectively. We
calculate relative losses of typical estimators, γ̃R and γ̃B , with respect to the optimal Bayes
estimator, γ̃BLF , for each of samples, using the given data. Various choices of ω, µ and f
are considered.

In the Counties 70 case, Table 2.2 provides relative losses of γ̃R and γ̃B over γ̃BLF , denoted
by RLR and RLB respectively. Table 2.3 shows the results for the Cancer population. An
inspection of Table 2.2 and Table 2.3 reveal that the optimal Bayes estimator γ̃BLF is
superior to the Bayes estimator γ̃B as well as the classical ratio estimator γ̃R in terms of
the posterior expected loss. For example, in the case of ω = 0.5, µ = 2.0 and f = 0.9, RLB
equals 0.638. That means that posterior expected loss under these conditions is inflated by
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63.8% using γ̃B rather than γ̃BLF . Also, if ω = 0, reflecting only the precision of estimation,
then γ̃BLF is equivalent to γ̃B . So RLB is equal to zero in this case.

2.4. Conditions for dominance related to risks

We compute risk functions of γ̃R, γ̃B and γ̃BLF under the BLF. Then we will find out
such conditions that the optimal Bayes estimator γ̃BLF dominates typical estimators, γ̃R
and γ̃B related to risks. The risk function for any estimator γ̃ of γ associated with the BLF
is obtained by integrating the BLF given in (2.4) over the samples given the parameter β.

First, the risk function of the classical ratio estimator γ̃R with respect to the BLF is given
by

R (γ̃R, γ ) = Eys|β
[
LB(γ̃R, γ)

]
=

µ2(β)

n

[
wnx̄s − w

∑
i∈s x

2
i

n

1

x̄s
+ (1− w)f2x̄r

n

N − n
+ (1− w)f2x̄2

r

1

x̄s

]
.

Also, the risk function of γ̃B with respect to the BLF is given by

R (γ̃B , γ ) = Eys|β
[
LB(γ̃B , γ)

]
=

µ2(β)

n

[
ωnx̄s+ω1(1−B)2 1

x̄s
+(1− ω)f2x̄r

n

N − n
−2ω

∑
i∈s x

2
i

n
(1−B)

1

x̄s

]
+ω1B

2(β − µ)2. (2.11)

Next, to obtain the risk function of γ̃BLF , the optimal Bayes estimator of β under the BLF,
denoted by β̃∗ can be written as

β̃∗ = ω∗
(∑

i∈s xiyi∑
i∈s x

2
i

− ȳs
x̄s

)
+ (1− C)

ȳs
x̄s

+ Cµ,

where C = (1− ω∗)B. Let

A1 = ω∗
(∑

i∈s xiyi∑
i∈s x

2
i

− ȳs
x̄s

)
and A2 = (1− C)

ȳs
x̄s

+ Cµ.

Then, the risk function of the optimal Bayes estimator γ̃BLF with respect to the BLF is
given by

R (γ̃BLF , γ ) = Eys|β
[
LB(γ̃BLF , γ)

]
= RC +

µ2(β)

n

[
ωω∗

(∑
i∈s x

2
i

nx̄s
−
∑
i∈s x

3
i∑

i∈s x
2
i

)]
,

where RC is derived from R (γ̃B , γ ) by substituting C for B in (2.11). Hence, it follows that

R (γ̃BLF , γ ) =
µ2(β)

n

[
ωnx̄s + ω1(1− C)2 1

x̄s
+ (1− ω)f2x̄r

n

N − n

−2ω

∑
i∈s x

2
i

n
(1− C)

1

x̄s
+ ωω∗

(∑
i∈s x

2
i

nx̄s
−
∑
i∈s x

3
i∑

i∈s x
2
i

)]
+ ω2

1C
2(β − µ)2.
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Now, we seek dominant conditions for typical estimators by the proposed optimal Bayes
estimator in terms of risks. Let δ2 = (β − µ)2/

(
µ2(β)/n

)
. Then the differences between risk

functions is obtained by

∆R

(
γ̃R, γ̃BLF

)
= R (γ̃R, γ )−R (γ̃BLF , γ )

=
µ2(β)

n

[
2 (1− ω) f2 x̄2

r C
1

x̄s
− ω1 C

2
(
δ2 +

1

x̄s

)
− ω ω∗

∑
i∈s x

2
i

n

(
1

x̄s
−

n
∑
i∈s x

3
i(∑

i∈s x
2
i

)2 ) ]
and

∆R

(
γ̃B , γ̃BLF

)
= R (γ̃B , γ )−R (γ̃BLF , γ )

=
µ2(β)

n

[
ω1 (B2 − C2 )

(
δ2 +

1

x̄s

)
− 2 (1− ω) f2 x̄2

r

1

x̄s
(B − C)

− ω ω∗
∑
i∈s x

2
i

n

(
1

x̄s
−

n
∑
i∈s x

3
i(∑

i∈s x
2
i

)2 ) ].
Thus, we can see that condition for dominance of γ̃R by γ̃BLF is given by

δ2 <
2

B x̄s
−
(

w∗

1− w∗

)2
1

B2

(
1

x̄s
−

n
∑
i∈s x

3
i(∑

i∈s x
2
i

)2) − 1

x̄s
.

Also, we get the dominant condition for γ̃B by γ̃BLF as follows:

δ2 >
2(1− w∗)

2− w∗
1

B x̄s
+

w∗

2− w∗
1

B2

(
1

x̄s
−
n
∑
i∈s x

3
i

(
∑
i∈s x

2
i )

2

)
− 1

x̄s
.

As can be seen, the smaller δ2, the more easily γ̃BLF dominates γ̃R. Whereas, the larger δ2,
the more easily γ̃BLF dominates γ̃B .

3. Monte Carlo simulation for Bayes risks

3.1. Bayes risks

In this subsection, we theoretically evaluate Bayes risks related to BLF of considered
estimators to examine the superior performance of the proposed optimal Bayes estimator in
terms of Bayes risk.

The Bayes risks of typical estimators, γ̃R and γ̃B with respect to the BLF are given by

r (γ̃R, γ ) =
σ2

n

[
ω n x̄s − ω

∑
i∈s x

2
i

n

1

x̄s
+ (1− ω) f2 x̄r

n

N − n
+ (1− ω) f2 x̄2

r

1

x̄s

]
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and

r (γ̃B , γ ) =
E [µ2(β) ]

n

[
ω n x̄s + ω1 (1−B)2 1

x̄s
+ (1− ω)f2 x̄r

n

N − n

− 2ω

∑
i∈s x

2
i

n
(1−B)

1

x̄s

]
+ ω1B

2E [ (β − µ)2 ]

=
σ2

n

[
ω n x̄s + (1− ω)f2 x̄r

n

N − n
− 2ω

∑
i∈s x

2
i

n
(1−B)

1

x̄s
+ ω1(1−B)

1

x̄s

]
.

And the Bayes risk of γ̃BLF with respect to the BLF also is given by

r (γ̃BLF , γ ) =
σ2

n

[
ω n x̄s + (1− ω)f2 x̄r

n

N − n
− ω

∑
i∈s x

2
i

n
(2− C)

1

x̄s
+ ω1 (1− C)

1

x̄s

+ ω ω∗
( ∑

i∈s x
2
i

n x̄s
−
∑
i∈s x

3
i∑

i∈s x
2
i

) ]
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Then, differences between Bayes risks are given by
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and
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)
=
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n

[
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∑
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i

n

1

x̄s
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−
∑
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n x̄s
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It can be easily checked that ∆r

(
γ̃R, γ̃BLF

)
and ∆r

(
γ̃B , γ̃BLF

)
are strictly positive except for

w equal to zero from (3.1)-(3.2). That means the optimal Bayes estimator, γ̃BLF is superior
to typical estimators, γ̃R and γ̃B in terms of the Bayes risk. Furthermore, ∆r

(
γ̃B , γ̃BLF

)
is

increasing monotonically in ω. Whereas, ∆r

(
γ̃R, γ̃BLF

)
has not monotonicity in ω.

3.2. Monte Carlo simulation

In this subsection, we compare the Bayes risks of γ̃BLF with those of γ̃R and γ̃B through
the Monte Carlo simulations. The simulated Bayes risks are the average losses given in (2.4)
after 10,000 repetitions of an experiment. We considered normal and Poisson cases with the
assumption of posterior linearity in the assumed model. The percentage risk improvement
of γ̃BLF over γ̃R and γ̃B , denoted by PCTIMPR and PCTIMPB repectively, are provided
based on the simulated Bayes risks of each estimator.

We consider the normal case first. The β and yi’s are generated using the RNORM function
of the R. In this case, the auxiliary information (xi) is the number of households in each
county in 1960, referred to the previous real data. In the Counties 70 population, we obtained
β is equal to 4.14. Therefore, let β be four. The Bayes risks are calculated for various ω, f ,
τ2 and σ2. Table 3.1 and Table 3.2 show the results. As previously mentioned, if ω = 0, then
γ̃BLF is equivalent to γ̃B and PCTIMPB is equal to zero. From the table, yon can check
that PCTIMPR and PCTIMPB are positive except for ω equal to zero. This means that
the proposed estimator γ̃BLF is better than both γ̃C and γ̃B in terms of Bayes risks.
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Table 3.1 PCTIMPs of γ̃BLF over γ̃C and γ̃B in normal case (σ2 = 1)

f = 0.8 f = 0.9 f = 0.95
τ2 ω PCTIMPR PCTIMPB PCTIMPR PCTIMPB PCTIMPR PCTIMPB

.00 12.712 0.000 26.112 0.000 45.403 0.000

.25 2.064 2.223 4.156 3.860 9.662 7.112
0.1 .50 2.595 3.098 4.522 5.887 7.456 10.679

.75 3.030 3.618 5.086 6.970 7.795 13.292
1.00 3.231 3.886 5.639 7.828 8.674 15.112
.00 1.525 0.000 3.389 0.000 7.801 0.000
.25 1.842 1.866 3.063 3.019 4.593 4.080

1.0 .50 2.616 2.685 4.368 4.556 6.178 6.601
.75 2.911 2.990 5.005 5.254 7.757 8.677

1.00 3.255 3.347 5.554 5.904 8.715 9.861
.00 0.749 0.000 1.706 0.000 4.115 0.000
.25 1.868 1.875 2.960 2.952 4.137 3.747

2.0 .50 2.534 2.571 4.163 4.251 6.121 6.460
.75 2.976 3.011 5.190 5.340 7.373 7.868

1.00 3.228 3.265 5.570 5.720 8.467 9.002

Table 3.2 PCTIMPs of γ̃BLF over γ̃C and γ̃B in normal case (f = 0.9)

σ2 = 0.5 σ2 = 1.0 σ2 = 2.0
τ2 ω PCTIMPR PCTIMPB PCTIMPR PCTIMPB PCTIMPR PCTIMPB

.00 15.280 0.000 26.112 0.000 40.572 0.000

.25 3.350 3.161 4.156 3.860 4.809 4.674
0.1 .50 4.456 5.311 4.522 5.887 4.678 6.798

.75 5.135 6.136 5.086 6.970 5.106 8.256
1.00 5.644 7.139 5.639 7.828 5.569 9.020
.00 2.217 0.000 3.389 0.000 7.357 0.000
.25 3.017 2.982 3.063 3.020 3.234 3.091

1.0 .50 4.213 4.300 4.368 4.556 4.438 4.823
.75 5.026 5.152 5.005 5.254 5.110 5.644

1.00 5.767 5.915 5.554 5.904 5.486 6.092
.00 0.873 0.000 1.706 0.000 3.152 0.000
.25 2.753 2.706 2.960 2.952 3.224 3.137

2.0 .50 4.112 4.150 4.163 4.251 4.311 4.452
.75 5.072 5.146 5.190 5.340 4.902 5.140

1.00 5.604 5.694 5.570 5.720 5.571 5.866

Furthermore, as values of f and σ2 increase, PCTIMPR and PCTIMPB are increasing.
Large values of f means small n, and large values of σ2 means yi’s are very spread out
from the mean. The smaller n and the bigger variance of yi’s, the better γ̃BLF than typical
estimates. On the contrary, PCTIMPC and PCTIMPB decrease with τ2, because higher
values of τ2 would explain greater uncertainty about the prior. In addition, PCTIMPB is
monotonically increasing in w. However, PCTIMPR has not monotonicity in w.

Next, the Poisson case is considered. For Monte Carlo simulations, we first generate β
from a gamma(α, p ), and then we generate yi’s from Poisson(β xi). Here, the auxiliary
information (xi) is the adult white female population in 1960 of 301 counties. Variable type
of gamma distributions are considered. The cases p = 1, p = 0.5 and p = 3 correspond to
the exponetial, negatively skewed and positively skewed gammas, respectively.

Table 3.3 provides simulation findings. The results also report that the optimal Bayes
estimator γ̃BLF is better than both γ̃R and γ̃B in terms of Bayes risks.
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Table 3.3 PCTIMPs of γ̃BLF over γ̃C and γ̃B in Poisson case

f = 0.8 f = 0.9 f = 0.95
(α, p) ω PCTIMPR PCTIMPB PCTIMPR PCTIMPB PCTIMPR PCTIMPB

.00 0.019 0.000 2.169 0.000 3.503 0.000

.25 1.540 1.501 2.316 2.350 3.510 3.170
(0.5, 0.5) .50 1.997 1.997 3.295 3.318 5.361 5.469

.75 2.289 2.302 4.016 4.130 6.511 6.894
1.00 2.551 2.592 4.734 4.888 7.198 7.580
.00 1.384 0.000 3.916 0.000 6.741 0.000
.25 1.376 1.378 2.288 2.243 4.072 3.120

(1.0, 0.5) .50 1.958 1.974 3.408 3.545 5.154 5.527
.75 2.305 2.357 3.981 4.172 6.185 6.966

1.00 2.582 2.652 4.715 5.058 7.564 8.445
.00 4.573 0.000 11.137 0.000 23.498 0.000
.25 1.487 1.521 2.592 2.584 5.858 4.094

(4.0, 0.5) .50 1.957 2.174 3.341 3.864 5.841 7.086
.75 2.312 2.558 4.122 4.967 6.543 9.006

1.00 2.409 2.647 4.447 5.258 7.574 10.577
.00 0.611 0.000 1.639 0.000 4.307 0.000
.25 1.450 1.419 2.394 2.370 3.583 3.151

(0.5, 1.0) .50 1.936 1.951 3.376 3.438 5.096 5.188
.75 2.348 2.395 4.142 4.228 6.403 6.802

1.00 2.563 2.590 4.573 4.720 7.311 7.812
.00 1.945 0.000 1.587 0.000 6.075 0.000
.25 1.414 1.437 2.334 2.256 3.723 3.222

(1.0, 1.0) .50 1.928 1.979 3.429 3.582 5.017 5.386
.75 2.258 2.322 4.078 4.326 6.714 7.404

1.00 2.600 2.673 4.699 4.929 7.561 8.424
.00 5.181 0.000 9.970 0.000 21.296 0.000
.25 1.458 1.593 2.836 2.529 6.017 4.193

(4.0, 1.0) .50 1.933 2.105 3.419 3.849 5.786 7.307
.75 2.308 2.518 4.145 4.744 6.484 8.784

1.00 2.465 2.688 4.770 5.660 7.776 10.698
.00 1.017 0.000 1.025 0.000 3.479 0.000
.25 1.422 1.437 2.214 2.219 3.569 3.317

(0.5, 3.0) .50 2.011 2.038 3.201 3.289 5.294 5.475
.75 2.336 2.362 4.065 4.163 6.354 6.686

1.00 2.525 2.556 4.548 4.691 7.444 7.903
.00 1.119 0.000 2.480 0.000 6.592 0.000
.25 1.339 1.377 2.223 2.228 3.678 3.377

(1.0, 3.0) .50 2.043 2.088 3.288 3.437 5.316 5.694
.75 2.316 2.393 4.007 4.193 6.455 7.172

1.00 2.573 2.622 4.574 4.736 7.292 8.051
.00 4.940 0.000 10.310 0.000 22.262 0.000
.25 1.487 1.518 2.781 2.725 5.756 4.611

(4.0, 3.0) .50 1.998 2.152 3.490 3.907 5.762 6.940
.75 2.296 2.515 4.073 4.858 6.662 8.908

1.00 2.530 2.795 4.758 5.639 7.656 10.728

4. Concluding remarks

Throughout this paper, we have considered the balanced loss function in the Bayesian
inference for finite population mean. The balanced loss function takes both the goodness of
fit and the precision of estimation into account.
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We relaxed the normality assumption and assumed the posterior linearity instead. We
considered the superpopulation model in the presence of auxiliary information under the
assumed model. And, we obtained the optimal Bayes estimator of the finite population
mean under the BLF.

We found some conditions for dominance of typical estimators by the optimal Bayes esti-
mator. And It turned out that the optimal Bayes estimator is superior to typical estimators
in terms of the posterior expected loss and Bayes risks through the numerical study..
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