CHARACTERIZATIONS OF BOOLEAN RANK PRESERVERS OVER BOOLEAN MATRICES

Leroy B. Beasley ${ }^{\text {a }}$, Kyung-Tae Kang ${ }^{\text {b }}$ and Seok-Zun Song ${ }^{\text {c,* }}$

Abstract

The Boolean rank of a nonzero $m \times n$ Boolean matrix A is the least integer k such that there are an $m \times k$ Boolean matrix B and a $k \times n$ Boolean matrix C with $A=B C$. In 1984, Beasley and Pullman showed that a linear operator preserves the Boolean rank of any Boolean matrix if and only if it preserves Boolean ranks 1 and 2. In this paper, we extend this characterization of linear operators that preserve the Boolean ranks of Boolean matrices. We show that a linear operator preserves all Boolean ranks if and only if it preserves two consecutive Boolean ranks if and only if it strongly preserves a Boolean rank k with $1 \leq k \leq \min \{m, n\}$.

1. Introduction

The binary Boolean algebra consists of the set $\mathbb{B}=\{0,1\}$ equipped with two binary operations, addition and multiplication. The operations are defined as usual except that $1+1=1$.

Let $\mathbb{M}_{m, n}$ denote the set of all $m \times n$ Boolean matrices with entries in \mathbb{B}. The usual definitions for adding and multiplying matrices apply to Boolean matrices as well. Throughout this paper, we shall adopt the convention that $3 \leq m \leq n$ unless otherwise specified.

The (Boolean) rank, $b(A)$, of nonzero $A \in \mathbb{M}_{m, n}$ is the least integer k such that there are Boolean matrices $B \in \mathbb{M}_{m, k}$ and $C \in \mathbb{M}_{k, n}$ with $A=B C$. It follows that $1 \leq b(A) \leq m$ for all nonzero $A \in \mathbb{M}_{m, n}$. The Boolean rank of the zero Boolean matrix is 0 .

A mapping $T: \mathbb{M}_{m, n} \rightarrow \mathbb{M}_{m, n}$ is called a linear operator if $T(\alpha A+\beta B)=$ $\alpha T(A)+\beta T(B)$ for all $A, B \in \mathbb{M}_{m, n}$ and for all $\alpha, \beta \in \mathbb{B}$.

[^0]A linear operator T on $\mathbb{M}_{m, n}$ is called a (P, Q)-operator if there are permutation matrices P and Q of orders m and n, respectively, such that $T(X)=P X Q$ for all X, or $m=n$ and $T(X)=P X^{t} Q$ for all X, where X^{t} is the transpose of X.

Let $1 \leq k \leq m$. For a linear operator T on $\mathbb{M}_{m, n}$, we say that
(1) T preserves Boolean rank k if $b(T(X))=k$ whenever $b(X)=k$ for all X;
(2) T strongly preserves Boolean rank k if, $b(T(X))=k$ if and only if $b(X)=k$ for all X;
(3) T preserves Boolean rank if it preserves Boolean rank k for all $k \in\{1,2, \ldots, m\}$.

Beasley and Pullman ([1]) have characterized linear operators on $\mathbb{M}_{m, n}$ that preserve Boolean rank as follows:

Theorem 1.1. For a linear operator T on $\mathbb{M}_{m, n}$, the following are equivalent:
(i) T preserves Boolean rank;
(ii) T preserves Boolean ranks 1 and 2;
(iii) T is a (P, Q)-operator.

The characterization of linear operators on vector space of matrices which leave functions, sets or relations invariant began over a century ago when in 1897 Fröbenius [7] characterized the linear operators that leave the determinant function invariant. Since then, several researchers have investigated the preservers of nearly every function, set and relation on matrices over fields. See $[6,7]$ for an excellent survey of Linear Preserver Problems through 2001. For Boolean matrix and Boolean rank are important research topics on matrix theory. See $[4,5]$ for detailed contents and applications on Boolean matrix theory.

Recently Beasley and Song ([3]) have obtained a new characterization of Theorem 1.1: For a linear operator T on $\mathbb{M}_{m, n}, T$ preserves Boolean rank if and only if T preserves Boolean ranks 1 and k, where $1<k \leq m$. They also have obtained characterizations of the linear transformations that preserve term rank between different matrix spaces over semirings containing the binary Boolean algebra in [2].

In this paper, we extend Theorem 1.1 to any two consecutive Boolean rank preservers. Furthermore we obtain other characterizations.

2. Preliminaries

The matrix O is an arbitrary zero matrix and $J_{m, n}$ is the $m \times n$ matrix all of whose entries are 1 . A matrix in $\mathbb{M}_{m, n}$ is called a cell if it has exactly one 1 entry. We denote the cell whose one 1 entry is in the $(i, j)^{t h}$ position by $E_{i, j}$. Further we
let $\mathcal{E}_{m, n}$ be the set of all cells in $\mathbb{M}_{m, n}$. That is, $\mathcal{E}_{m, n}=\left\{E_{i, j} \mid 1 \leq i \leq m, 1 \leq j \leq n\right\}$.
If A and B are Boolean matrices in $\mathbb{M}_{m, n}$, we say that A dominates B (written $B \sqsubseteq A$ or $A \sqsupseteq B)$ if $a_{i, j}=0$ implies $b_{i, j}=0$ for all i and j. This provides a reflexive and transitive relation on $\mathbb{M}_{m, n}$. For Boolean matrices A and B in $\mathbb{M}_{m, n}$ with $B \sqsubseteq A$, we define $A \backslash B$ to be the Boolean matrix C such that $c_{i, j}=1$ if and only if $a_{i, j}=1$ and $b_{i, j}=0$ for all i and j.

Lemma 2.1 ([1]). If T is a linear operator on $\mathbb{M}_{m, n}$, then T is invertible if and only if T permutes $\mathcal{E}_{m, n}$.

A Boolean matrix $L \in \mathbb{M}_{m, n}$ is called a line matrix if $L=\sum_{l=1}^{n} E_{i, l}$ or $L=\sum_{s=1}^{m} E_{s, j}$ for some $i \in\{1, \ldots, m\}$ or for some $j \in\{1, \ldots, n\}$: $R_{i}=\sum_{l=1}^{n} E_{i, l}$ is the i th row matrix and $C_{j}=\sum_{s=1}^{m} E_{s, j}$ is the j th column matrix.

For a linear operator T on $\mathbb{M}_{m, n}$, we say that T preserves line matrices if $T(L)$ is a line matrix for every line matrix L.

Lemma 2.2. Let T be an invertible linear operator on $\mathbb{M}_{m, n}$. Then T preserves line matrices if and only if T is a (P, Q)-operator.

Proof. By Lemma 2.1, T permutes $\mathcal{E}_{m, n}$ and hence $T\left(J_{m, n}\right)=J_{m, n}$. Let T preserve all line matrices. Now we will claim that either
(1) T maps $\left\{R_{1}, \ldots, R_{m}\right\}$ onto $\left\{R_{1}, \ldots, R_{m}\right\}$ and maps $\left\{C_{1}, \ldots, C_{n}\right\}$ onto $\left\{C_{1}, \ldots, C_{n}\right\}$, or
(2) T maps $\left\{R_{1}, \ldots, R_{n}\right\}$ onto $\left\{C_{1}, \ldots, C_{n}\right\}$ and maps $\left\{C_{1}, \ldots, C_{n}\right\}$ onto $\left\{R_{1}, \ldots, R_{n}\right\}$.

If $m \neq n$, (1) is satisfied since T is invertible and preserves all line matrices.
Thus we assume that $m=n$. Suppose that the claim is not true. Then there are distinct row matrices R_{i} and R_{j} (or column matrices C_{i} and C_{j}) such that $T\left(R_{i}\right)$ is a row matrix and $T\left(R_{j}\right)$ is a column matrix. But then $T\left(J_{m, n}\right)=T\left(R_{1}\right)+\cdots T\left(R_{i}\right)+$ $\cdots+T\left(R_{j}\right)+\cdots+T\left(R_{n}\right)$ cannot dominate $J_{m, n}$. This contradicts $T\left(J_{m, n}\right)=J_{m, n}$. Hence the claim is true.

Case (1): We note that $T\left(R_{i}\right)=R_{\alpha(i)}$ for all i and $T\left(C_{j}\right)=C_{\beta(j)}$ for all j, where α and β are permutations of $\{1, \ldots, m\}$ and $\{1, \ldots, n\}$, respectively. Then for any cell $E_{i, j}$, we have $T\left(E_{i, j}\right)=E_{\alpha(i), \beta(j)}$. Let P and Q be the permutation matrices corresponding to α and β, respectively. Then for any Boolean matrix
$X=\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i, j} E_{i, j} \in \mathbb{M}_{m, n}$, we have

$$
T(X)=\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i, j} E_{\alpha(i), \beta(j)}=P X Q .
$$

Hence T is a (P, Q)-operator.
Case (2): We note that $m=n, T\left(R_{i}\right)=C_{\alpha(i)}$ for all i and $T\left(C_{j}\right)=R_{\beta(j)}$ for all j, where α and β are permutations of $\{1, \ldots, n\}$. By a parallel argument similar to Case (1), we obtain that $T(X)$ is of the form $T(X)=P X^{t} Q$, and thus T is a (P, Q)-operator. The converse is obvious.

For nonzero $A \in \mathbb{M}_{m, n}$, it is well known ([1]) that $b(A)$ is the least integer k such that A is the sum of k Boolean matrices of Boolean rank 1. This establishes the following:
Lemma 2.3. For Boolean matrices A and B in $\mathbb{M}_{m, n}$, we have

$$
b(A+B) \leq b(A)+b(B)
$$

Theorem 2.4. Let T be an invertible linear operator on $\mathbb{M}_{m, n}$ and $1 \leq k \leq m$. Then T preserves Boolean rank k if and only if T is a (P, Q)-operator.

Proof. By Lemma 2.1, T permutes $\mathcal{E}_{m, n}$. Assume that T preserves Boolean rank k. Now, we will show that T preserves line matrices, and then T is a (P, Q)-operator by Lemma 2.2. For the case of $k=1$, it is clear that T preserves line matrices since the Boolean rank of every line matrix is 1 . Thus we assume that $k \geq 2$. Suppose that T does not preserve a line matrix. Then there are two distinct cells $E_{i, j}$ and $E_{s, t}$ that are not dominated by the same line matrix such that $T\left(E_{i, j}\right)$ and $T\left(E_{s, t}\right)$ are dominated by the same line matrix. Without loss of generality, we assume that $T\left(E_{1,1}+E_{2,2}\right)=E_{1,1}+E_{1,2}$. So, we have a contradiction for the case of $k=2$. Hence we assume that $k \geq 3$. Then for the Boolean matrix $A=E_{3,3}+\cdots+E_{k, k}$, we have $b\left(E_{1,1}+E_{2,2}+A\right)=k$. But by Lemma 2.3,

$$
b\left(T\left(E_{1,1}+E_{2,2}+A\right)\right) \leq b\left(T\left(E_{1,1}+E_{2,2}\right)\right)+b(T(A)) \leq 1+(k-2)=k-1,
$$

a contradiction to the fact that T preserves Boolean rank k. Hence T preserves line matrices. The converse is obvious.

3. Characterizations of Boolean Rank Preservers

An operator T on $\mathbb{M}_{m, n}$ is singular if $T(X)=O$ for some nonzero $X \in \mathbb{M}_{m, n}$;
otherwise T is nonsingular. In fact, if T is a singular linear operator on $\mathbb{M}_{m, n}$, then we can easily check that $T(E)=O$ for some cell E. Further, if T is a (P, Q)-operator on $\mathbb{M}_{m, n}$, then T is nonsingular.

Example 3.1. For $1 \leq k \leq m$, let $A=E_{1,1}+E_{2,2}+\cdots+E_{k, k} \in \mathbb{M}_{m, n}$. Define an operator T on $\mathbb{M}_{m, n}$ by $T(O)=O$ and $T(X)=A$ for all nonzero $X \in \mathbb{M}_{m, n}$. Clearly, T is linear, nonsingular and preserves Boolean rank k, while T does not preserve Boolean rank.

The number of nonzero entries of a Boolean matrix $A \in \mathbb{M}_{m, n}$ is denoted by $\sharp(A)$.
Lemma 3.2. Let $1 \leq k<m$ and $1 \leq l \leq m$. Assume that T is a linear operator on $\mathbb{M}_{m, n}$. If
(i) T preserves Boolean rank k and $k+1$, or
(ii) T strongly preserves Boolean rank l,
then T is nonsingular.
Proof. If T is singular, then $T(E)=O$ for some cell E. Hence we have a contradiction for the case of $k=l=1$. Thus we assume that $k, l \geq 2$. Now, choose Boolean matrices A and B with $E \sqsubseteq A$ and $E \sqsubseteq B$ such that $b(A)=\sharp(A)=k+1$ and $b(B)=\sharp(B)=l$. It follows that $b(A \backslash E)=k$ and $b(B \backslash E)=l-1$. But then $T(A)=T(A \backslash E)+T(E)=T(A \backslash E)$ contradicts the condition (i) and $T(B)=T(B \backslash E)+T(E)=T(B \backslash E)$ contradicts the condition (ii). Hence T is nonsingular.
Lemma 3.3. Let T be a linear operator on $\mathbb{M}_{m, n}$. If
(i) T preserves Boolean rank k and $k+1$ with $1 \leq k \leq m-1$, or
(ii) T strongly preserves Boolean rank k with $1 \leq k \leq m$,
then T maps cells to cells.
Proof. If T preserves Boolean rank k and $k+1$ with $1 \leq k \leq m-1$, or T strongly preserves Boolean rank k with $1 \leq k \leq m$, then T is nonsingular by Lemma 3.2. Suppose that T does not map cells to cells, in particular suppose that $T(E)$ dominates two cells for some cell E. By permuting we may assume that $T(E) \sqsupseteq E+F$ for some cell $F \neq E$.

If E and F are in the same row, we may assume by permuting that $E=E_{1, k+1}$ and $F=E_{1, k}$. If E and F are in the same column, we may assume by permuting that $E=E_{k+1,1}$ and $F=E_{k, 1}$. If E and F are in different rows and different columns,
we may assume by permuting that $E=E_{1, k+1}$ and $F=E_{2, k-1}$. For $1 \leq r \leq m$, let $W_{r}=\left[w_{i, j}^{(r)}\right]$ where $w_{i, j}^{(r)}=0$ if and only if $i+j \leq r$. Then $b\left(W_{r}\right)=r$. Since $E \sqsubseteq W_{k+1}$ and $F \nsubseteq W_{k+1}$, we have that $b\left(W_{k+1}+E\right)=k+1$ and $b\left(W_{k+1}+F\right)=k$.

Let $L=T^{d}$ where d is chosen so that L is idempotent $\left(L^{2}=L\right)$. Then, L preserves Boolean ranks k and $k+1$ for case (i), or L strongly preserves Boolean rank k for case (ii) and $L(E) \sqsupseteq E+F$.

Now, since $L(E)=F+X$ for some Boolean matrix X,

$$
L(E)+F=(X+F)+F=X+F=L(E)
$$

and since L is idempotent,

$$
\begin{aligned}
L(E) & =L^{2}(E)=L(L(E))=L(L(E)+F) \\
& =L^{2}(E)+L(F)=L(E)+L(F)=L(E+F)
\end{aligned}
$$

That is, $L(E+F)=L(E)$. Thus if Y is any Boolean matrix which dominates E, we have that $L(Y+F)=L(Y)$ since $L(Y+F)=L(Y+E+F)=L(Y)+L(E+F)=$ $L(Y)+L(E)=L(Y+E)=L(Y)$. Thus,

$$
L\left(W_{k+1}\right)=L\left(W_{k+1}+F\right) .
$$

However, $b\left(W_{k+1}\right)=k+1, b\left(W_{k+1}+F\right)=k$ and L preserves both Boolean rank k and $k+1$ for case (i) or L strongly preserves Boolean rank k for case (ii). Thus, we have

$$
k+1=b\left(L\left(W_{k+1}\right)\right)=b\left(L\left(W_{k+1}+F\right)\right)=k
$$

which is a contradiction for the both cases (i) and (ii). Therefore T maps cells to cells.

Theorem 3.4. Let T be a linear operator on $\mathbb{M}_{m, n}$. Then T preserves Boolean rank if and only if
(i) T preserves Boolean rank k and $k+1$ with $1 \leq k \leq m-1$, or
(ii) T strongly preserves Boolean rank k with $1 \leq k \leq m$.

Proof. Let T preserve Boolean ranks k and $k+1$ or T strongly preserves Boolean rank k. Then T maps cells to cells by Lemma 3.3. Now, suppose that T is not invertible. Then $T(E)=T(F)$ for some distinct cells E and F by Lemma 2.1. If $b(E+F)=2$, choose a Boolean matrix $A \in \mathbb{M}_{m, n}$ with $b(A)=\sharp(A)=k-1$ such that $b(E+A)=k$ and $b(E+F+A)=k+1$. But then $k+1=b(T(E+F+A))=b(T(E+A))=k$, a contradiction for both cases (i) and (ii). For the case of $b(E+F)=1$, we may assume, without loss of generality, that $E=E_{1,1}$ and $F=E_{1,2}$. Let $B=$
$E_{2,1}+E_{2,2}+E_{3,3}+\cdots+E_{k+1, k+1}$. Then $b(E+F+B)=k$ and $b(E+B)=k+1$. But then $k=b(T(E+F+B))=b(T(E+B))=k+1$, a contradiction for both cases (i) and (ii). Thus T is invertible. By Theorem 2.4, T is a (P, Q)-operator and hence T preserves Boolean rank by Theorem 1.1. The converse is obvious.

Recently Beasley and Song ([3]) showed that for a linear operator T on $\mathbb{M}_{m, n}$, T preserves Boolean rank if and only if T preserves Boolean ranks 1 and k, where $2 \leq k \leq m$.

Now we summarize our results by:
Theorem 3.5. Let T be a linear operator on $\mathbb{M}_{m, n}$. Then the following are equivalent:
(i) T preserves Boolean rank;
(ii) T preserves Boolean ranks k and $k+1$, where $1 \leq k \leq m-1$;
(iii) T preserves Boolean ranks 1 and k, where $2 \leq k \leq m$;
(iv) T strongly preserves Boolean rank k, where $1 \leq k \leq m$;
(v) T is a (P, Q)-operator.

As a concluding remark, we suggest to prove the following conjecture:
Conjecture 3.6. Let T be a linear operator on $\mathbb{M}_{m, n}$. Then T preserves Boolean rank if and only if T preserves any two Boolean ranks h and k with $1 \leq h<k \leq$ $m \leq n$.

Acknowledgement. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(No. 2012R1A1A2042193).

References

1. L.B. Beasley \& N.J. Pullman: Boolean rank preserving operators and Boolean rank-1 spaces. Linear Algebra and Its Applications 59 (1984), 55-77.
2. L.B. Beasley \& S.Z. Song: Linear transformations that preserve term rank between different matrix spaces. J. Korean Math. Sci. Soc. 50 (2013), 127-136.
3. \qquad : Linear operators that preserve Boolean rank of Boolean matrices. Czech. Math. J. 63 (2013), 435-440.
4. D. deCaen, D. Gregory \& N. Pullman: The Boolean rank of zero one matrices. Proceedings of the Third Caribbean Conference on Combinatorics and Computing, Barbados, 1981, 169-173.
5. K.H. Kim: Boolean Matrix Theory and Applications. Pure Appl. Math. Vol. 70, Marcel Dekker, New York, 1982.
6. C.-K. Li \& S.J. Pierce: Linear preserver problems. Amer. Math. Monthly 108 (2001), no. 7, 591-605.
7. S.J. Pierce et.al.: A Survey of Linear Preserver Problems. Linear and Multilinear Algebra 33 (1992), 1-119.
${ }^{\text {a }}$ Department of Mathematics and Statistics, Utah State University, Logan, Utah 843223900, USA
Email address: leroy.b.beasley@aggiemail.usu.edu
${ }^{\text {b }}$ Department of Mathematics, Jeju National University, Jeju 690-756, Republic of KoREA
Email address: kangkt@jejunu.ac.kr
c cepartment of Mathematics, Jeju National University, Jeju 690-756, Republic of KoREA
Email address: szsong@jejunu.ac.kr

[^0]: Received by the editors March 01, 2014. Accepted May 01, 2014.
 2010 Mathematics Subject Classification. 15A04, 15A86, 15B34.
 Key words and phrases. Boolean rank, linear operator, (strongly) preserve.

 * Corresponding author.

