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CHARACTERIZATIONS OF BOOLEAN RANK PRESERVERS
OVER BOOLEAN MATRICES

Leroy B. Beasley a, Kyung-Tae Kang b and Seok-Zun Song c, ∗

Abstract. The Boolean rank of a nonzero m × n Boolean matrix A is the least
integer k such that there are an m×k Boolean matrix B and a k×n Boolean matrix C
with A = BC. In 1984, Beasley and Pullman showed that a linear operator preserves
the Boolean rank of any Boolean matrix if and only if it preserves Boolean ranks
1 and 2. In this paper, we extend this characterization of linear operators that
preserve the Boolean ranks of Boolean matrices. We show that a linear operator
preserves all Boolean ranks if and only if it preserves two consecutive Boolean ranks
if and only if it strongly preserves a Boolean rank k with 1 ≤ k ≤ min{m, n}.

1. Introduction

The binary Boolean algebra consists of the set B = {0, 1} equipped with two
binary operations, addition and multiplication. The operations are defined as usual
except that 1 + 1 = 1.

Let Mm,n denote the set of all m × n Boolean matrices with entries in B. The
usual definitions for adding and multiplying matrices apply to Boolean matrices as
well. Throughout this paper, we shall adopt the convention that 3 ≤ m ≤ n unless
otherwise specified.

The (Boolean) rank, b(A), of nonzero A ∈ Mm,n is the least integer k such that
there are Boolean matrices B ∈ Mm,k and C ∈ Mk,n with A = BC. It follows that
1 ≤ b(A) ≤ m for all nonzero A ∈ Mm,n. The Boolean rank of the zero Boolean
matrix is 0.

A mapping T : Mm,n → Mm,n is called a linear operator if T (αA + βB) =
αT (A) + βT (B) for all A,B ∈Mm,n and for all α, β ∈ B.
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A linear operator T on Mm,n is called a (P, Q)-operator if there are permutation
matrices P and Q of orders m and n, respectively, such that T (X) = PXQ for all
X, or m = n and T (X) = PXtQ for all X, where Xt is the transpose of X.

Let 1 ≤ k ≤ m. For a linear operator T on Mm,n, we say that

(1) T preserves Boolean rank k if b(T (X)) = k whenever b(X) = k for all X;
(2) T strongly preserves Boolean rank k if, b(T (X)) = k if and only if b(X) = k

for all X;
(3) T preserves Boolean rank if it preserves Boolean rank k for all k ∈ {1, 2, . . . ,m}.

Beasley and Pullman ([1]) have characterized linear operators on Mm,n that pre-
serve Boolean rank as follows:

Theorem 1.1. For a linear operator T on Mm,n, the following are equivalent:

(i) T preserves Boolean rank;
(ii) T preserves Boolean ranks 1 and 2;
(iii) T is a (P, Q)-operator.

The characterization of linear operators on vector space of matrices which leave
functions, sets or relations invariant began over a century ago when in 1897 Fröbenius
[7] characterized the linear operators that leave the determinant function invariant.
Since then, several researchers have investigated the preservers of nearly every func-
tion, set and relation on matrices over fields. See [6, 7] for an excellent survey of
Linear Preserver Problems through 2001. For Boolean matrix and Boolean rank
are important research topics on matrix theory. See [4, 5] for detailed contents and
applications on Boolean matrix theory.

Recently Beasley and Song ([3]) have obtained a new characterization of Theorem
1.1: For a linear operator T on Mm,n, T preserves Boolean rank if and only if T

preserves Boolean ranks 1 and k, where 1 < k ≤ m. They also have obtained char-
acterizations of the linear transformations that preserve term rank between different
matrix spaces over semirings containing the binary Boolean algebra in [2].

In this paper, we extend Theorem 1.1 to any two consecutive Boolean rank pre-
servers. Furthermore we obtain other characterizations.

2. Preliminaries

The matrix O is an arbitrary zero matrix and Jm,n is the m × n matrix all of
whose entries are 1. A matrix in Mm,n is called a cell if it has exactly one 1 entry.
We denote the cell whose one 1 entry is in the (i, j)th position by Ei,j . Further we
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let Em,n be the set of all cells inMm,n. That is, Em,n = {Ei,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
If A and B are Boolean matrices in Mm,n, we say that A dominates B (written

B v A or A w B) if ai,j = 0 implies bi,j = 0 for all i and j. This provides a
reflexive and transitive relation on Mm,n. For Boolean matrices A and B in Mm,n

with B v A, we define A \ B to be the Boolean matrix C such that ci,j = 1 if and
only if ai,j = 1 and bi,j = 0 for all i and j.

Lemma 2.1 ([1]). If T is a linear operator on Mm,n, then T is invertible if and
only if T permutes Em,n.

A Boolean matrix L ∈Mm,n is called a line matrix if L =
n∑

l=1

Ei,l or L =
m∑

s=1
Es,j

for some i ∈ {1, . . . , m} or for some j ∈ {1, . . . , n}: Ri =
n∑

l=1

Ei,l is the ith row

matrix and Cj =
m∑

s=1
Es,j is the jth column matrix.

For a linear operator T on Mm,n, we say that T preserves line matrices if T (L)
is a line matrix for every line matrix L.

Lemma 2.2. Let T be an invertible linear operator on Mm,n. Then T preserves line
matrices if and only if T is a (P, Q)-operator.

Proof. By Lemma 2.1, T permutes Em,n and hence T (Jm,n) = Jm,n. Let T preserve
all line matrices. Now we will claim that either

(1) T maps {R1, . . . , Rm} onto {R1, . . . , Rm} and
maps {C1, . . . , Cn} onto {C1, . . . , Cn}, or

(2) T maps {R1, . . . , Rn} onto {C1, . . . , Cn} and
maps {C1, . . . , Cn} onto {R1, . . . , Rn}.

If m 6= n, (1) is satisfied since T is invertible and preserves all line matrices.
Thus we assume that m = n. Suppose that the claim is not true. Then there are

distinct row matrices Ri and Rj (or column matrices Ci and Cj) such that T (Ri) is a
row matrix and T (Rj) is a column matrix. But then T (Jm,n) = T (R1)+ · · ·T (Ri)+
· · ·+ T (Rj) + · · ·+ T (Rn) cannot dominate Jm,n. This contradicts T (Jm,n) = Jm,n.
Hence the claim is true.

Case (1): We note that T (Ri) = Rα(i) for all i and T (Cj) = Cβ(j) for all j,
where α and β are permutations of {1, . . . , m} and {1, . . . , n}, respectively. Then
for any cell Ei,j , we have T (Ei,j) = Eα(i),β(j). Let P and Q be the permutation
matrices corresponding to α and β, respectively. Then for any Boolean matrix
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X =
m∑

i=1

n∑
j=1

xi,jEi,j ∈Mm,n, we have

T (X) =
m∑

i=1

n∑

j=1

xi,jEα(i),β(j) = PXQ.

Hence T is a (P, Q)-operator.
Case (2): We note that m = n, T (Ri) = Cα(i) for all i and T (Cj) = Rβ(j) for

all j, where α and β are permutations of {1, . . . , n}. By a parallel argument similar
to Case (1), we obtain that T (X) is of the form T (X) = PXtQ, and thus T is a
(P, Q)-operator. The converse is obvious. ¤

For nonzero A ∈Mm,n, it is well known ([1]) that b(A) is the least integer k such
that A is the sum of k Boolean matrices of Boolean rank 1. This establishes the
following:

Lemma 2.3. For Boolean matrices A and B in Mm,n, we have

b(A + B) ≤ b(A) + b(B).

Theorem 2.4. Let T be an invertible linear operator on Mm,n and 1 ≤ k ≤ m.
Then T preserves Boolean rank k if and only if T is a (P,Q)-operator.

Proof. By Lemma 2.1, T permutes Em,n. Assume that T preserves Boolean rank k.
Now, we will show that T preserves line matrices, and then T is a (P,Q)-operator
by Lemma 2.2. For the case of k = 1, it is clear that T preserves line matrices since
the Boolean rank of every line matrix is 1. Thus we assume that k ≥ 2. Suppose
that T does not preserve a line matrix. Then there are two distinct cells Ei,j and
Es,t that are not dominated by the same line matrix such that T (Ei,j) and T (Es,t)
are dominated by the same line matrix. Without loss of generality, we assume that
T (E1,1 + E2,2) = E1,1 + E1,2. So, we have a contradiction for the case of k = 2.
Hence we assume that k ≥ 3. Then for the Boolean matrix A = E3,3 + · · · + Ek,k,
we have b(E1,1 + E2,2 + A) = k. But by Lemma 2.3,

b(T (E1,1 + E2,2 + A)) ≤ b(T (E1,1 + E2,2)) + b(T (A)) ≤ 1 + (k − 2) = k − 1,

a contradiction to the fact that T preserves Boolean rank k. Hence T preserves line
matrices. The converse is obvious. ¤

3. Characterizations of Boolean Rank Preservers

An operator T on Mm,n is singular if T (X) = O for some nonzero X ∈Mm,n;
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otherwise T is nonsingular. In fact, if T is a singular linear operator on Mm,n, then
we can easily check that T (E) = O for some cell E. Further, if T is a (P,Q)-operator
on Mm,n, then T is nonsingular.

Example 3.1. For 1 ≤ k ≤ m, let A = E1,1 + E2,2 + · · · + Ek,k ∈ Mm,n. Define
an operator T on Mm,n by T (O) = O and T (X) = A for all nonzero X ∈ Mm,n.
Clearly, T is linear, nonsingular and preserves Boolean rank k, while T does not
preserve Boolean rank.

The number of nonzero entries of a Boolean matrix A ∈Mm,n is denoted by ](A).

Lemma 3.2. Let 1 ≤ k < m and 1 ≤ l ≤ m. Assume that T is a linear operator on
Mm,n. If

(i) T preserves Boolean rank k and k + 1, or
(ii) T strongly preserves Boolean rank l,

then T is nonsingular.

Proof. If T is singular, then T (E) = O for some cell E. Hence we have a contra-
diction for the case of k = l = 1. Thus we assume that k, l ≥ 2. Now, choose
Boolean matrices A and B with E v A and E v B such that b(A) = ](A) = k + 1
and b(B) = ](B) = l. It follows that b(A \ E) = k and b(B \ E) = l − 1. But
then T (A) = T (A \ E) + T (E) = T (A \ E) contradicts the condition (i) and
T (B) = T (B \ E) + T (E) = T (B \ E) contradicts the condition (ii). Hence T

is nonsingular. ¤

Lemma 3.3. Let T be a linear operator on Mm,n. If

(i) T preserves Boolean rank k and k + 1 with 1 ≤ k ≤ m− 1, or
(ii) T strongly preserves Boolean rank k with 1 ≤ k ≤ m,

then T maps cells to cells.

Proof. If T preserves Boolean rank k and k + 1 with 1 ≤ k ≤ m− 1, or T strongly
preserves Boolean rank k with 1 ≤ k ≤ m, then T is nonsingular by Lemma 3.2.
Suppose that T does not map cells to cells, in particular suppose that T (E) domi-
nates two cells for some cell E. By permuting we may assume that T (E) w E + F

for some cell F 6= E.
If E and F are in the same row, we may assume by permuting that E = E1,k+1

and F = E1,k. If E and F are in the same column, we may assume by permuting that
E = Ek+1,1 and F = Ek,1. If E and F are in different rows and different columns,
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we may assume by permuting that E = E1,k+1 and F = E2,k−1. For 1 ≤ r ≤ m,
let Wr = [w(r)

i,j ] where w
(r)
i,j = 0 if and only if i + j ≤ r. Then b(Wr) = r. Since

E v Wk+1 and F 6v Wk+1, we have that b(Wk+1 +E) = k +1 and b(Wk+1 +F ) = k.
Let L = T d where d is chosen so that L is idempotent (L2 = L). Then, L

preserves Boolean ranks k and k + 1 for case (i), or L strongly preserves Boolean
rank k for case (ii) and L(E) w E + F .

Now, since L(E) = F + X for some Boolean matrix X,

L(E) + F = (X + F ) + F = X + F = L(E)

and since L is idempotent,

L(E) = L2(E) = L(L(E)) = L(L(E) + F )

= L2(E) + L(F ) = L(E) + L(F ) = L(E + F ).

That is, L(E +F ) = L(E). Thus if Y is any Boolean matrix which dominates E, we
have that L(Y + F ) = L(Y ) since L(Y + F ) = L(Y + E + F ) = L(Y ) + L(E + F ) =
L(Y ) + L(E) = L(Y + E) = L(Y ). Thus,

L(Wk+1) = L(Wk+1 + F ).

However, b(Wk+1) = k + 1, b(Wk+1 + F ) = k and L preserves both Boolean rank k

and k + 1 for case (i) or L strongly preserves Boolean rank k for case (ii). Thus, we
have

k + 1 = b(L(Wk+1)) = b(L(Wk+1 + F )) = k,

which is a contradiction for the both cases (i) and (ii). Therefore T maps cells to
cells. ¤

Theorem 3.4. Let T be a linear operator on Mm,n. Then T preserves Boolean rank
if and only if

(i) T preserves Boolean rank k and k + 1 with 1 ≤ k ≤ m− 1, or
(ii) T strongly preserves Boolean rank k with 1 ≤ k ≤ m.

Proof. Let T preserve Boolean ranks k and k+1 or T strongly preserves Boolean rank
k. Then T maps cells to cells by Lemma 3.3. Now, suppose that T is not invertible.
Then T (E) = T (F ) for some distinct cells E and F by Lemma 2.1. If b(E +F ) = 2,
choose a Boolean matrix A ∈Mm,n with b(A) = ](A) = k−1 such that b(E+A) = k

and b(E + F + A) = k + 1. But then k + 1 = b(T (E + F + A)) = b(T (E + A)) = k,
a contradiction for both cases (i) and (ii). For the case of b(E + F ) = 1, we
may assume, without loss of generality, that E = E1,1 and F = E1,2. Let B =
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E2,1 + E2,2 + E3,3 + · · ·+ Ek+1,k+1. Then b(E + F + B) = k and b(E + B) = k + 1.
But then k = b(T (E + F + B)) = b(T (E + B)) = k + 1, a contradiction for both
cases (i) and (ii). Thus T is invertible. By Theorem 2.4, T is a (P, Q)-operator and
hence T preserves Boolean rank by Theorem 1.1. The converse is obvious. ¤

Recently Beasley and Song ([3]) showed that for a linear operator T on Mm,n,
T preserves Boolean rank if and only if T preserves Boolean ranks 1 and k, where
2 ≤ k ≤ m.

Now we summarize our results by:

Theorem 3.5. Let T be a linear operator onMm,n. Then the following are equivalent:

(i) T preserves Boolean rank;
(ii) T preserves Boolean ranks k and k + 1, where 1 ≤ k ≤ m− 1;
(iii) T preserves Boolean ranks 1 and k, where 2 ≤ k ≤ m;
(iv) T strongly preserves Boolean rank k, where 1 ≤ k ≤ m;
(v) T is a (P, Q)-operator.

As a concluding remark, we suggest to prove the following conjecture:

Conjecture 3.6. Let T be a linear operator on Mm,n. Then T preserves Boolean
rank if and only if T preserves any two Boolean ranks h and k with 1 ≤ h < k ≤
m ≤ n.
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