CHARACTERIZATIONS OF BOOLEAN RANK PRESERVERS OVER BOOLEAN MATRICES

LEROY B. BEASLEY^a, KYUNG-TAE KANG^b AND SEOK-ZUN SONG^{c,*}

ABSTRACT. The Boolean rank of a nonzero $m \times n$ Boolean matrix A is the least integer k such that there are an $m \times k$ Boolean matrix B and a $k \times n$ Boolean matrix Cwith A = BC. In 1984, Beasley and Pullman showed that a linear operator preserves the Boolean rank of any Boolean matrix if and only if it preserves Boolean ranks 1 and 2. In this paper, we extend this characterization of linear operators that preserve the Boolean ranks of Boolean matrices. We show that a linear operator preserves all Boolean ranks if and only if it preserves two consecutive Boolean ranks if and only if it strongly preserves a Boolean rank k with $1 \le k \le \min\{m, n\}$.

1. INTRODUCTION

The binary Boolean algebra consists of the set $\mathbb{B} = \{0, 1\}$ equipped with two binary operations, addition and multiplication. The operations are defined as usual except that 1 + 1 = 1.

Let $\mathbb{M}_{m,n}$ denote the set of all $m \times n$ Boolean matrices with entries in \mathbb{B} . The usual definitions for adding and multiplying matrices apply to Boolean matrices as well. Throughout this paper, we shall adopt the convention that $3 \leq m \leq n$ unless otherwise specified.

The (Boolean) rank, b(A), of nonzero $A \in \mathbb{M}_{m,n}$ is the least integer k such that there are Boolean matrices $B \in \mathbb{M}_{m,k}$ and $C \in \mathbb{M}_{k,n}$ with A = BC. It follows that $1 \leq b(A) \leq m$ for all nonzero $A \in \mathbb{M}_{m,n}$. The Boolean rank of the zero Boolean matrix is 0.

A mapping $T : \mathbb{M}_{m,n} \to \mathbb{M}_{m,n}$ is called a *linear operator* if $T(\alpha A + \beta B) = \alpha T(A) + \beta T(B)$ for all $A, B \in \mathbb{M}_{m,n}$ and for all $\alpha, \beta \in \mathbb{B}$.

© 2014 Korean Soc. Math. Educ.

Received by the editors March 01, 2014. Accepted May 01, 2014.

²⁰¹⁰ Mathematics Subject Classification. 15A04, 15A86, 15B34.

Key words and phrases. Boolean rank, linear operator, (strongly) preserve.

^{*}Corresponding author.

A linear operator T on $\mathbb{M}_{m,n}$ is called a (P,Q)-operator if there are permutation matrices P and Q of orders m and n, respectively, such that T(X) = PXQ for all X, or m = n and $T(X) = PX^tQ$ for all X, where X^t is the transpose of X.

Let $1 \leq k \leq m$. For a linear operator T on $\mathbb{M}_{m,n}$, we say that

- (1) T preserves Boolean rank k if b(T(X)) = k whenever b(X) = k for all X;
- (2) T strongly preserves Boolean rank k if, b(T(X)) = k if and only if b(X) = k for all X;
- (3) T preserves Boolean rank if it preserves Boolean rank k for all $k \in \{1, 2, ..., m\}$.

Beasley and Pullman ([1]) have characterized linear operators on $\mathbb{M}_{m,n}$ that preserve Boolean rank as follows:

Theorem 1.1. For a linear operator T on $\mathbb{M}_{m,n}$, the following are equivalent:

- (i) T preserves Boolean rank;
- (ii) T preserves Boolean ranks 1 and 2;
- (iii) T is a (P,Q)-operator.

The characterization of linear operators on vector space of matrices which leave functions, sets or relations invariant began over a century ago when in 1897 Fröbenius [7] characterized the linear operators that leave the determinant function invariant. Since then, several researchers have investigated the preservers of nearly every function, set and relation on matrices over fields. See [6, 7] for an excellent survey of Linear Preserver Problems through 2001. For Boolean matrix and Boolean rank are important research topics on matrix theory. See [4, 5] for detailed contents and applications on Boolean matrix theory.

Recently Beasley and Song ([3]) have obtained a new characterization of Theorem 1.1: For a linear operator T on $\mathbb{M}_{m,n}$, T preserves Boolean rank if and only if Tpreserves Boolean ranks 1 and k, where $1 < k \leq m$. They also have obtained characterizations of the linear transformations that preserve term rank between different matrix spaces over semirings containing the binary Boolean algebra in [2].

In this paper, we extend Theorem 1.1 to any two consecutive Boolean rank preservers. Furthermore we obtain other characterizations.

2. Preliminaries

The matrix O is an arbitrary zero matrix and $J_{m,n}$ is the $m \times n$ matrix all of whose entries are 1. A matrix in $\mathbb{M}_{m,n}$ is called a *cell* if it has exactly one 1 entry. We denote the cell whose one 1 entry is in the $(i, j)^{th}$ position by $E_{i,j}$. Further we

122

let $\mathcal{E}_{m,n}$ be the set of all cells in $\mathbb{M}_{m,n}$. That is, $\mathcal{E}_{m,n} = \{E_{i,j} \mid 1 \le i \le m, 1 \le j \le n\}$.

If A and B are Boolean matrices in $\mathbb{M}_{m,n}$, we say that A dominates B (written $B \sqsubseteq A$ or $A \sqsupseteq B$) if $a_{i,j} = 0$ implies $b_{i,j} = 0$ for all i and j. This provides a reflexive and transitive relation on $\mathbb{M}_{m,n}$. For Boolean matrices A and B in $\mathbb{M}_{m,n}$ with $B \sqsubseteq A$, we define $A \setminus B$ to be the Boolean matrix C such that $c_{i,j} = 1$ if and only if $a_{i,j} = 1$ and $b_{i,j} = 0$ for all i and j.

Lemma 2.1 ([1]). If T is a linear operator on $\mathbb{M}_{m,n}$, then T is invertible if and only if T permutes $\mathcal{E}_{m,n}$.

A Boolean matrix $L \in \mathbb{M}_{m,n}$ is called a *line matrix* if $L = \sum_{l=1}^{n} E_{i,l}$ or $L = \sum_{s=1}^{m} E_{s,j}$ for some $i \in \{1, \dots, m\}$ or for some $j \in \{1, \dots, n\}$: $R_i = \sum_{l=1}^{n} E_{i,l}$ is the *i*th row matrix and $C_j = \sum_{s=1}^{m} E_{s,j}$ is the *j*th column matrix.

For a linear operator T on $\mathbb{M}_{m,n}$, we say that T preserves line matrices if T(L) is a line matrix for every line matrix L.

Lemma 2.2. Let T be an invertible linear operator on $\mathbb{M}_{m,n}$. Then T preserves line matrices if and only if T is a (P,Q)-operator.

Proof. By Lemma 2.1, T permutes $\mathcal{E}_{m,n}$ and hence $T(J_{m,n}) = J_{m,n}$. Let T preserve all line matrices. Now we will claim that either

- (1) T maps $\{R_1, ..., R_m\}$ onto $\{R_1, ..., R_m\}$ and maps $\{C_1, ..., C_n\}$ onto $\{C_1, ..., C_n\}$, or
- (2) T maps $\{R_1, ..., R_n\}$ onto $\{C_1, ..., C_n\}$ and maps $\{C_1, ..., C_n\}$ onto $\{R_1, ..., R_n\}$.

If $m \neq n$, (1) is satisfied since T is invertible and preserves all line matrices.

Thus we assume that m = n. Suppose that the claim is not true. Then there are distinct row matrices R_i and R_j (or column matrices C_i and C_j) such that $T(R_i)$ is a row matrix and $T(R_j)$ is a column matrix. But then $T(J_{m,n}) = T(R_1) + \cdots + T(R_i) + \cdots + T(R_j) + \cdots + T(R_n)$ cannot dominate $J_{m,n}$. This contradicts $T(J_{m,n}) = J_{m,n}$. Hence the claim is true.

Case (1): We note that $T(R_i) = R_{\alpha(i)}$ for all i and $T(C_j) = C_{\beta(j)}$ for all j, where α and β are permutations of $\{1, \ldots, m\}$ and $\{1, \ldots, n\}$, respectively. Then for any cell $E_{i,j}$, we have $T(E_{i,j}) = E_{\alpha(i),\beta(j)}$. Let P and Q be the permutation matrices corresponding to α and β , respectively. Then for any Boolean matrix $X = \sum_{i=1}^{m} \sum_{j=1}^{n} x_{i,j} E_{i,j} \in \mathbb{M}_{m,n}, \text{ we have}$

$$T(X) = \sum_{i=1}^{m} \sum_{j=1}^{n} x_{i,j} E_{\alpha(i),\beta(j)} = PXQ.$$

Hence T is a (P, Q)-operator.

Case (2): We note that m = n, $T(R_i) = C_{\alpha(i)}$ for all i and $T(C_j) = R_{\beta(j)}$ for all j, where α and β are permutations of $\{1, \ldots, n\}$. By a parallel argument similar to Case (1), we obtain that T(X) is of the form $T(X) = PX^tQ$, and thus T is a (P,Q)-operator. The converse is obvious.

For nonzero $A \in \mathbb{M}_{m,n}$, it is well known ([1]) that b(A) is the least integer k such that A is the sum of k Boolean matrices of Boolean rank 1. This establishes the following:

Lemma 2.3. For Boolean matrices A and B in $\mathbb{M}_{m,n}$, we have

$$b(A+B) \le b(A) + b(B).$$

Theorem 2.4. Let T be an invertible linear operator on $\mathbb{M}_{m,n}$ and $1 \leq k \leq m$. Then T preserves Boolean rank k if and only if T is a (P,Q)-operator.

Proof. By Lemma 2.1, T permutes $\mathcal{E}_{m,n}$. Assume that T preserves Boolean rank k. Now, we will show that T preserves line matrices, and then T is a (P,Q)-operator by Lemma 2.2. For the case of k = 1, it is clear that T preserves line matrices since the Boolean rank of every line matrix is 1. Thus we assume that $k \ge 2$. Suppose that T does not preserve a line matrix. Then there are two distinct cells $E_{i,j}$ and $E_{s,t}$ that are not dominated by the same line matrix such that $T(E_{i,j})$ and $T(E_{s,t})$ are dominated by the same line matrix. Without loss of generality, we assume that $T(E_{1,1} + E_{2,2}) = E_{1,1} + E_{1,2}$. So, we have a contradiction for the case of k = 2. Hence we assume that $k \ge 3$. Then for the Boolean matrix $A = E_{3,3} + \cdots + E_{k,k}$, we have $b(E_{1,1} + E_{2,2} + A) = k$. But by Lemma 2.3,

$$b(T(E_{1,1} + E_{2,2} + A)) \le b(T(E_{1,1} + E_{2,2})) + b(T(A)) \le 1 + (k-2) = k-1,$$

a contradiction to the fact that T preserves Boolean rank k. Hence T preserves line matrices. The converse is obvious.

3. CHARACTERIZATIONS OF BOOLEAN RANK PRESERVERS

An operator T on $\mathbb{M}_{m,n}$ is singular if T(X) = O for some nonzero $X \in \mathbb{M}_{m,n}$;

otherwise T is nonsingular. In fact, if T is a singular linear operator on $\mathbb{M}_{m,n}$, then we can easily check that T(E) = O for some cell E. Further, if T is a (P, Q)-operator on $\mathbb{M}_{m,n}$, then T is nonsingular.

Example 3.1. For $1 \leq k \leq m$, let $A = E_{1,1} + E_{2,2} + \cdots + E_{k,k} \in \mathbb{M}_{m,n}$. Define an operator T on $\mathbb{M}_{m,n}$ by T(O) = O and T(X) = A for all nonzero $X \in \mathbb{M}_{m,n}$. Clearly, T is linear, nonsingular and preserves Boolean rank k, while T does not preserve Boolean rank.

The number of nonzero entries of a Boolean matrix $A \in \mathbb{M}_{m,n}$ is denoted by $\sharp(A)$.

Lemma 3.2. Let $1 \le k < m$ and $1 \le l \le m$. Assume that T is a linear operator on $\mathbb{M}_{m,n}$. If

- (i) T preserves Boolean rank k and k + 1, or
- (ii) T strongly preserves Boolean rank l,

then T is nonsingular.

Proof. If T is singular, then T(E) = O for some cell E. Hence we have a contradiction for the case of k = l = 1. Thus we assume that $k, l \ge 2$. Now, choose Boolean matrices A and B with $E \sqsubseteq A$ and $E \sqsubseteq B$ such that $b(A) = \sharp(A) = k + 1$ and $b(B) = \sharp(B) = l$. It follows that $b(A \setminus E) = k$ and $b(B \setminus E) = l - 1$. But then $T(A) = T(A \setminus E) + T(E) = T(A \setminus E)$ contradicts the condition (i) and $T(B) = T(B \setminus E) + T(E) = T(B \setminus E)$ contradicts the condition (ii). Hence T is nonsingular.

Lemma 3.3. Let T be a linear operator on $\mathbb{M}_{m,n}$. If

- (i) T preserves Boolean rank k and k+1 with $1 \le k \le m-1$, or
- (ii) T strongly preserves Boolean rank k with $1 \le k \le m$,

then T maps cells to cells.

Proof. If T preserves Boolean rank k and k + 1 with $1 \le k \le m - 1$, or T strongly preserves Boolean rank k with $1 \le k \le m$, then T is nonsingular by Lemma 3.2. Suppose that T does not map cells to cells, in particular suppose that T(E) dominates two cells for some cell E. By permuting we may assume that $T(E) \sqsupseteq E + F$ for some cell $F \ne E$.

If E and F are in the same row, we may assume by permuting that $E = E_{1,k+1}$ and $F = E_{1,k}$. If E and F are in the same column, we may assume by permuting that $E = E_{k+1,1}$ and $F = E_{k,1}$. If E and F are in different rows and different columns, we may assume by permuting that $E = E_{1,k+1}$ and $F = E_{2,k-1}$. For $1 \le r \le m$, let $W_r = [w_{i,j}^{(r)}]$ where $w_{i,j}^{(r)} = 0$ if and only if $i + j \le r$. Then $b(W_r) = r$. Since $E \sqsubseteq W_{k+1}$ and $F \not\sqsubseteq W_{k+1}$, we have that $b(W_{k+1} + E) = k + 1$ and $b(W_{k+1} + F) = k$.

Let $L = T^d$ where d is chosen so that L is idempotent $(L^2 = L)$. Then, L preserves Boolean ranks k and k + 1 for case (i), or L strongly preserves Boolean rank k for case (ii) and $L(E) \supseteq E + F$.

Now, since L(E) = F + X for some Boolean matrix X,

$$L(E) + F = (X + F) + F = X + F = L(E)$$

and since L is idempotent,

$$L(E) = L^{2}(E) = L(L(E)) = L(L(E) + F)$$

= $L^{2}(E) + L(F) = L(E) + L(F) = L(E + F).$

That is, L(E+F) = L(E). Thus if Y is any Boolean matrix which dominates E, we have that L(Y+F) = L(Y) since L(Y+F) = L(Y+E+F) = L(Y) + L(E+F) = L(Y) + L(E) = L(Y+E) = L(Y). Thus,

$$L(W_{k+1}) = L(W_{k+1} + F).$$

However, $b(W_{k+1}) = k + 1$, $b(W_{k+1} + F) = k$ and L preserves both Boolean rank k and k + 1 for case (i) or L strongly preserves Boolean rank k for case (ii). Thus, we have

$$k + 1 = b(L(W_{k+1})) = b(L(W_{k+1} + F)) = k,$$

which is a contradiction for the both cases (i) and (ii). Therefore T maps cells to cells.

Theorem 3.4. Let T be a linear operator on $\mathbb{M}_{m,n}$. Then T preserves Boolean rank if and only if

- (i) T preserves Boolean rank k and k + 1 with $1 \le k \le m 1$, or
- (ii) T strongly preserves Boolean rank k with $1 \le k \le m$.

Proof. Let T preserve Boolean ranks k and k+1 or T strongly preserves Boolean rank k. Then T maps cells to cells by Lemma 3.3. Now, suppose that T is not invertible. Then T(E) = T(F) for some distinct cells E and F by Lemma 2.1. If b(E+F) = 2, choose a Boolean matrix $A \in \mathbb{M}_{m,n}$ with $b(A) = \sharp(A) = k-1$ such that b(E+A) = k and b(E+F+A) = k+1. But then k+1 = b(T(E+F+A)) = b(T(E+A)) = k, a contradiction for both cases (i) and (ii). For the case of b(E+F) = 1, we may assume, without loss of generality, that $E = E_{1,1}$ and $F = E_{1,2}$. Let B =

 $E_{2,1} + E_{2,2} + E_{3,3} + \dots + E_{k+1,k+1}$. Then b(E + F + B) = k and b(E + B) = k + 1. But then k = b(T(E + F + B)) = b(T(E + B)) = k + 1, a contradiction for both cases (i) and (ii). Thus T is invertible. By Theorem 2.4, T is a (P,Q)-operator and hence T preserves Boolean rank by Theorem 1.1. The converse is obvious. \Box

Recently Beasley and Song ([3]) showed that for a linear operator T on $\mathbb{M}_{m,n}$, T preserves Boolean rank if and only if T preserves Boolean ranks 1 and k, where $2 \leq k \leq m$.

Now we summarize our results by:

Theorem 3.5. Let T be a linear operator on $\mathbb{M}_{m,n}$. Then the following are equivalent:

- (i) T preserves Boolean rank;
- (ii) T preserves Boolean ranks k and k+1, where $1 \le k \le m-1$;
- (iii) T preserves Boolean ranks 1 and k, where $2 \le k \le m$;
- (iv) T strongly preserves Boolean rank k, where $1 \le k \le m$;
- (v) T is a (P,Q)-operator.

As a concluding remark, we suggest to prove the following conjecture:

Conjecture 3.6. Let T be a linear operator on $\mathbb{M}_{m,n}$. Then T preserves Boolean rank if and only if T preserves any two Boolean ranks h and k with $1 \le h < k \le m \le n$.

Acknowledgement. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(No. 2012R1A1A2042193).

References

- L.B. Beasley & N.J. Pullman: Boolean rank preserving operators and Boolean rank-1 spaces. *Linear Algebra and Its Applications* 59 (1984), 55-77.
- L.B. Beasley & S.Z. Song: Linear transformations that preserve term rank between different matrix spaces. J. Korean Math. Sci. Soc. 50 (2013), 127-136.
- 3. _____: Linear operators that preserve Boolean rank of Boolean matrices. *Czech. Math. J.* **63** (2013), 435-440.
- D. deCaen, D. Gregory & N. Pullman: The Boolean rank of zero one matrices. Proceedings of the Third Caribbean Conference on Combinatorics and Computing, Barbados, 1981, 169-173.

- K.H. Kim: Boolean Matrix Theory and Applications. Pure Appl. Math. Vol. 70, Marcel Dekker, New York, 1982.
- C.-K. Li & S.J. Pierce: Linear preserver problems. Amer. Math. Monthly 108 (2001), no. 7, 591-605.
- S.J. Pierce et.al.: A Survey of Linear Preserver Problems. *Linear and Multilinear Algebra* 33 (1992), 1-119.

^aDepartment of Mathematics and Statistics, Utah State University, Logan, Utah 84322-3900, USA

 $Email \ address: \verb"leroy.b.beasley@aggiemail.usu.edu"$

^bDepartment of Mathematics, Jeju National University, Jeju 690-756, Republic of Korea

Email address: kangkt@jejunu.ac.kr

 $^{\rm c}{\rm Department}$ of Mathematics, Jeju National University, Jeju 690-756, Republic of Korea

Email address: szsong@jejunu.ac.kr

128