
J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN(Print) 1226-0657
http://dx.doi.org/10.7468/jksmeb.2014.21.2.113 ISSN(Online) 2287-6081
Volume 21, Number 2 (May 2014), Pages 113–120

FILTER SPACES AND BASICALLY DISCONNECTED COVERS

Young Ju Jeon a and ChangIl Kim b, ∗

Abstract. In this paper, we first show that for any space X, there is a σ-complete
Boolean subalgebra Z(ΛX)# of R(X) and that the subspace {α | α is a fixed

σZ(X)#-ultrafilter} of the Stone-space S(Z(ΛX)#) is the minimal basically discon-
nected cover of X. Using this, we will show that for any countably locally weakly
Lindelöf space X, the set {M |M is a σ-complete Boolean subalgebra of R(X) con-
taining Z(X)# and s−1

M (X) is basically disconnected}, when partially ordered by
inclusion, becomes a complete lattice.

1. Introduction

All spaces in this paper are Tychonoff spaces and βX denotes the Stone-Čech
compactification of a space X .

Vermeer([10]) showed that every space X has the minimal basically disconnected
cover (ΛX, ΛX) and if X is a compact space, then ΛX is given by the Stone-space
S(σZ(X)#) of a σ-complete Boolean subalgebra σZ(X)# of R(X). Henriksen,
Vermeer and Woods([4])(Kim [7], resp.) showed that the

minimal basically disconnected cover of a weakly Lindelöf space (a locally weakly
Lindelöf space, resp.) X is given by the subspace {α | α is a fixed σZ(X)#-
ultrafilter} of the Stone-space S(σZ(X)#).

In this paper, we first show that for any space X, there is a σ-complete Boolean
subalgebra Z(ΛX)# of R(X) and that the subspace {α | α is a fixed σZ(X)#-
ultrafilter} of the Stone-space S(Z(ΛX)#) is the the minimal basically disconnected
cover of X. Using this, we will show that S(Z(ΛX)#) and βΛX are homeomorphic.
Moreover, we show that for any σ-complete Booeal subalgebra M ofR(X) containing
Z(X)#, the Stone-space S(M) of M is a basically diconnected cover of X and that
the subspace {α | α is a fixed M -ultrafilter} of the Stone-space S(M) is the the
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minimal basically disconnected cover of X if and only if it is a basically disconnected
space and M ⊆ Z(ΛX)#. Finally, we will show that for any countably locally
weakly Lindelöf space X, the set {M |M is a σ-complete Boolean subalgebra ofR(X)
containg Z(X)# and s−1

M (X) is basically disconnected}, when partially ordered by
inclusion, becomes a complete lattice.

For the terminology, we refer to [1] and [9].

2. Filter Spaces

The set R(X) of all regular closed sets in a space X, when partially ordered
by inclusion, becomes a complete Boolean algebra, in which the join, meet, and
complementation operations are defined as follows : for any A ∈ R(X) and any
{Ai : i ∈ I} ⊆ R(X),
∨{Ai : i ∈ I} = clX(∪{Ai : i ∈ I}),
∧{Ai : i ∈ I} = clX(intX(∩{Ai : i ∈ I})), and
A′ = clX(X −A)

and a sublattice of R(X) is a subset of R(X) that contains ∅, X and is closed under
finite joins and meets.

We recall that a map f : Y −→ X is called a covering map if it is a continuous,
onto, perfect, and irreducible map.

Lemma 2.1 ([5]).
(1) Let f : Y −→ X be a covering map. Then the map ψ : R(Y ) −→ R(X), defined
by ψ(A) = f(A) ∩ X, is a Boolean isomorphism and the inverse map ψ−1 of ψ is
given by ψ−1(B) = clY (f−1(intX(B))) = clY (intY (f−1(B))).

(2) Let X be a dense subspace of a space K. Then the map φ : R(K) −→ R(X),
defined by φ(A) = A ∩X, is a Boolean isomorphism and the inverse map φ−1 of φ

is given by φ−1(B) = clK(B).

A lattice L is called σ-complete if every countable subset of L has the join and
the meet. For any subset M of a Boolean algebra L, there is the smallest σ-complete
Boolean subalgebra σM of L containing M . Let X be a space and Z(X) the set
of all zero-sets in X. Then Z(X)# = {clX(intX(Z)) | Z ∈ Z(X)} is a sublattice of
R(X).

We recall that a subspace X of a space Y is C∗-embedded in Y if for any real-
valued continuous map f : X −→ R, there is a continuous map g : Y −→ R such
that g|X = f .
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Let X be a space. Since X is C∗-embedded in βX, by Lemma 2.1., σZ(X)# and
σZ(βX)# are Boolean isomorphic.

Let X be a space and B a Boolean subalgebra of R(X). Let S(B) = {α | α is
a B-ultrafilter} and for any B ∈ B, ΣBB = {α ∈ S(B) | B ∈ α}. Then the space
S(B), equipped with the topology for which {ΣBB | B ∈ B} is a base, called the
Stone-space of B. Then S(B) is a compact, zero-dimensional space and the map
sB : S(B) −→ βX, defined by sB(α) = ∩{clβX(A) | A ∈ B}, is a covering map ([7]).

Definition 2.2. A space X is called basically disconnected if for any zero-set Z in
X, intX(Z) is closed in X, equivalently, every cozero-set in X is C∗-embedded in
X.

A space X is a basically disconnected space if and only if βX is a basically
disconnected space. If X is a basically disconnected space, every element in Z(X)#

is clopen in X and so X is a basically disconnected space if and only if Z(X)# is a
σ-complete Boolean algebra.

Definition 2.3. Let X be a space. Then a pair (Y, f) is called
(1) a cover of X if f : Y −→ X is a covering map,
(2) a basically disconnected cover of X if (Y, f) is a cover of X and Y is a basically
disconnected space, and

(3) a minimal basically disconnected cover of X if (Y, f) is a basically disconnected
cover of X and for any basically disconnected cover (Z, g) of X, there is a covering
map h : Z −→ Y such that f ◦ h = g.

Vermeer([10]) showed that every space X has a minimal basically disconnected
cover (ΛX, ΛX) and that if X is a compact space, then ΛX is the Stone-space
S(σZ(X)#) of σZ(X)# and ΛX(α) = ∩{A | A ∈ α} (α ∈ ΛX).

Let X be a space. Since σZ(X)# and σZ(βX)# are Boolean isomorphic, S(σZ(X)#)
and S(σZ(βX)#) are homeomorphic.

Let X, Y be spaces and f : Y −→ X a map. For any U ⊆ X, let fU : f−1(U) −→
U denote the restriction and co-restriction of f with respect to f−1(U) and U ,
respectively.

In the following, for any space X, (ΛβX, Λβ) denotes the minimal basically dis-
connected cover of βX.

Lemma 2.4 ([7]). Let X be a space. If Λ−1
β (X) is a basically disconnected space,

then (Λ−1
β (X),ΛβX

) is the minimal basically disconnected cover of X.
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For any covering map f : Y −→ X, let Z(f)# = {clY (intX(f(Z))) | Z ∈ Z(Y )#}.
Since R(ΛX) and R(X) are Boolean isomorphic and Z(ΛX)# is a σ-complete
Boolean subalgebra of R(ΛX), by Lemma 2.1, Z(ΛX)# is a σ-complete Boolean
subalgebra of R(X).

Definition 2.5. Let X be a space and B a sublattice of R(X). Then a B-filter F
is called fixed if {F | F ∈ F} 6= ∅.

Let X be a space and for any Z(ΛX)#-ultrafilter α, let αλ = {A ∈ Z(ΛX)# |
ΛX(A) ∈ α}.
Proposition 2.6. Let X be a space and α a fixed Z(ΛX)#-ultrafilter. Then αλ is
a fixed Z(ΛX)#-ultrafilter and | ∩{A | A ∈ αλ} |= 1.

Proof. Clearly, αλ is a Z(ΛX)#-filter. Suppose that A ∈ Z(ΛX)# − αλ. Then
ΛX(A) ∈ Z(ΛX)# − α. Since α is a Z(ΛX)#-ultrafilter, there is a C ∈ α such that
C∧ΛX(A) = ∅ and hence A∧clΛX(Λ−1

X (intX(C))) = ∅. Since ΛX(clΛX(Λ−1
X (intX(C)))) =

C ∈ α, clΛX(Λ−1
X (intX(C))) ∈ αλ and hence αλ is a Z(ΛX)#-ultrafilter. Since α is

fixed, there is an x ∈ ∩{B | B ∈ α}. Then {A ∩ Λ−1
X (x) | A ∈ αλ} has a family of

closed sets in Λ−1
X (x) with the finite intersection property. Since Λ−1

X (x) is a compact
subset of ΛX, ∩{A ∩ Λ−1

X (x) | A ∈ αλ} 6= ∅ and hence ∩{A | A ∈ αλ} 6= ∅. Since
Z(ΛX)# is a base for ΛX and αλ is a Z(ΛX)#-ultrafilter, | ∩{A | A ∈ αλ} |= 1. ¤

Let X be a space and FX = {α | α is a fixed Z(ΛX)#-ultrafilter} the subspace
of the Stone space S(Z(ΛX)#). Define a map hX : FX −→ ΛX by hX(α) = ∩{A |
A ∈ αλ}. In the following, let ΣB = ΣZ(ΛX)#

B for any B ∈ Z(ΛX)#.

Theorem 2.7. Let X be a space. Then hX : FX −→ ΛX is a homeomorphism.

Proof. Take any α, δ in FX with α 6= δ. Since α and δ are Z(ΛX)#-ultrafilters, there
are A,B in Z(ΛX)# such that ΛX(A) ∈ α, ΛX(B) ∈ δ such that ΛX(A)∧ΛX(B) = ∅.
Then A ∈ αλ, B ∈ δλ and A ∧ B = ∅. By Lemma 2.1, clΛX(A) ∩ clΛX(B) = ∅ and
hX(α) = ∩{G | G ∈ αλ} 6= ∩{H | H ∈ δλ} = hX(δ). Thus hX is an one-to-one map.

Let y ∈ ΛX and γ = {ΛX(C) | y ∈ C ∈ Z(ΛX)#}. Since every element of
Z(ΛX)# is a clopen set in ΛX, γ ∈ FX and hX(γ) = y and hence hX is an onto
map.

Let E ∈ Z(ΛX)#. Suppose that µ ∈ FX−h−1
X (E). Since ΛX(E) /∈ µ, µ /∈ ΣΛX(E)

and so ΣΛX
(E) ⊆ h−1(E). Suppose that θ ∈ h−1

X (E). Then hX(θ) ∈ E and hence for
any A ∈ θλ, A∩E 6= ∅. Since θλ is a Z(ΛX)#-ultrafilter, E ∈ θλ and so E ∈ ΣΛX(E)
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and hX(θ) ∈ E. Hence ΣΛX(E) = h−1
X (E) and since hX is one-to-one and onto, hX

is a homeomorphism. ¤

Corollary 2.8. Let X be a space and FX = ΛX ◦hX . Then (FX, FX) is the minimal
basically disconnected cover of X and F (α) = ∩{A | A ∈ α} for all α ∈ FX.

It is well-known that a space X is C∗-embedded in its compactification Y if and
only if βX = Y .

Theorem 2.9. Let X be a space. Then there is a homeomorphism k : βΛX −→
S(Z(ΛX)#) such that k ◦ βΛX ◦ hX = j, where j : FX −→ S(Z(ΛX)#) is the
inclusion map.

Proof. By Theorem 2.7., βFX = βΛX and S(Z(ΛX)#) is a compactification of FX.
Hence there is a continuous map k : βΛX −→ S(Z(ΛX)#) such that k◦βΛX◦hX = j,
where j : ΛX −→ S(Z(ΛX)#) is the dense embedding. Let T = S(Z(ΛX)#)
and A, B be disjoint zero-sets in FX. Then there are disjoint zero-sets C,D in
FX such that A ⊆ intFX(C) and B ⊆ intFX(D). Since hX : FX −→ ΛX is
a homeomorphism, clFX(intFX(C)) = ΣFX(clFX(intFX(C))) ∩ FX and since FX is
dense in T , clT (clFX(intFX(C))) = ΣFX(clFX(intFX(C))). Similarly,

clT (clFX(intFX(D))) = ΣFX(clFX(intFX(D))).

Since clFX(intFX(C))) ∧ clFX(intFX(D))) = ∅,
FX(clFX(intFX(C))) ∧ FX(clFX(intFX(D))) = ∅.

Hence

clT (clFX(intFX(C))) ∩ clT (clFX(intFX(D)))

= ΣFX(clFX(intFX(C))) ∩ ΣFX(clFX(intFX(D)))

= ΣFX(clΛX(intΛX(C)))∧FX(clFX(intFX(D)))

= ∅.
By the Uryshon’s extension theorem, FX is C∗-embedded in T and so k is a home-
omorphism. ¤

It is known that βΛX = ΛβX if and only if {ΛX(A) | A ∈ Z(ΛX)#} =
σZ(X)#([5]). Hence we have the following :

Corollary 2.10. Let X be a space. Then βΛX = ΛβX if and only if Z(ΛX)# =
σZ(X)#.
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3. Basically Disconnected Covers

Let X be a space and M a σ-complete Boolean subalgebra of R(X) containg
Z(X)#. By the dfinition of σZ(X)#, σZ(X)# ⊆ M .

Proposition 3.1. Let X be a space and M a σ-complete Boolean subalgebra of
R(X) containg Z(X)#. Then S(M) is a basically disconnected space.

Proof. Let D be a cozero-set in S(M). Since S(M) is a compact space, D is a
Lindelöf space and hence there is a sequense (An) in M such that D = ∪{ΣM

An
| n ∈

N}. Clearly, clS(M)(D) ⊆ ΣM
∨{An|n∈N}. Let α ∈ S(M) − clS(M)(∪{ΣM

An
| n ∈ N}).

Then there is a B ∈ M such that α ∈ ΣM
B and (∪{ΣM

An
| n ∈ N}) ∩ ΣM

B = ∅.
Hence for any n ∈ N , ΣM

An
∩ ΣM

B = ΣAn∧B = ∅ and hence An ∧ B = ∅. So,
∨{An ∧ B | n ∈ N} = (∨{An | n ∈ N}) ∧ B = ∅. Since B ∈ α, ∨{An | n ∈ N} /∈ α

and so α /∈ Σ∨{An|n∈N}. Hence clS(M)(D) is open in S(M) and thus S(M) is a
basically disconnected space. ¤

Let X be a space and M a σ-complete Boolean subalgebra of R(X) containg
Z(X)#. By Theorem 3.1, there is a covering map t : S(M) −→ ΛβX such that
Λβ ◦ t = sM .

Theorem 3.2. Let X be a space and M a σ-complete Boolean subalgebra of R(X)
containg Z(X)#. Then we have the following :

(1) There is a covering map g : S(M) −→ βΛX such that sZ(ΛX)# ◦ g = sM if and
only if Z(ΛX)# ⊆ M .

(2) There is a covering map f : βΛX −→ S(M) such that sM ◦ f = sZ(ΛX)# if and
only if M ⊆ Z(ΛX)#.

(3) (s−1
M (X), sMX

) is the minimal basically disconnected cover of X if and only if
(s−1

M (X), sMX
) is a basically disconnected cover of X and M ⊆ Z(ΛX)#.

Proof. (1) (⇒) Take any Z ∈ Z(ΛX)#. Then there is an A ∈ Z(βΛX)# such that
Z = A∩ΛX. Since βΛX is basically disconnected, g−1(A) is a clopen-set in S(M).
Since S(M) is compact, there is a D ∈ M such that g−1(A) = ΣM

D . Since sM

and sZ(ΛX)# are covering maps, clβX(D) = sM (g−1(A)) = sZ(ΛX)#(A). By Lemma
2.1, D = sM (g−1(A)) ∩X = sZ(ΛX)#(A) ∩X = ΛX(A ∩ ΛX) = ΛX(Z) and hence
ΛX(Z) ∈ M .

(⇐) It is trivial([9]).
Similarly, we have (2)
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(3) (⇒) Suppose that (s−1
M (X), sMX

) is the minimal basically disconnected cover
of X. Then there is a homeomorhpism l : s−1

M (X) −→ ΛX such that ΛX ◦ l = sMX
.

Hence there is a covering map f : βΛX −→ S(M) such that f ◦ βΛX ◦ l = j, where
j : s−1

M (X) −→ S(M) is the inclusion map. Take any D ∈ M . Then f−1(ΣM
D ) is a

clopen set in βΛX and since βΛX is a compact space, there is an A ∈ Z(ΛX)# such
that ΣA = f−1(ΣM

D ). Hence sZ(ΛX)#(ΣA) = clβX(A) = sZ(ΛX)#(f−1(ΣM
D )). Since

sM ◦ f ◦ βΛX ◦ l = sM ◦ j = βX ◦ ΛX ◦ l = sZ(ΛX)# ◦ βΛX ◦ l and βΛX ◦ l is a dense
embedding, sM ◦ f = sZ(ΛX)# . By (2), we have the result.

(⇐) Since s−1
M (X) is a basically disconnected space, there is a covering map

l : s−1
M (X) −→ ΛX such that ΛX ◦ l = sMX

. Since M ⊆ Z(ΛX)#, by (2), there is a
covering map f : βΛX −→ S(M) such that sM ◦ f = sZ(ΛX)# . Since sM ◦ f ◦βΛX =
sZ(ΛX)#◦βΛX = βX◦ΛX , there is a covering m : ΛX −→ s−1

M (X) such that sMX
◦m =

ΛX and j ◦m = f ◦βΛX . Since ΛX ◦ l◦m = sMX
◦m = ΛX = ΛX ◦1ΛX and ΛX , l◦m

are coevring maps, l ◦m = 1ΛX . Hence s−1
M (X) and ΛX are homeomorphic. ¤

We recall that a space X is called a weakly Lindelöf space if for any open cover
U , there is a countable subset V of U such that ∪V is dense in X and that X is
called a countably locally weakly Lindelöf space if for any countable set {Un|n ∈ N}
of open covers of X and any x ∈ X, there is a neighborhood G of x in X and for
any n ∈ N, there is a countable subset Vn of Un such that G ⊆ clX(∪Vn).

It was shown that for any countably locally weakly Lindelöf space X, Λ−1
β (X)

is a basically disconnected space([8]). Using Lemma 2.4 and Theorem 3.2, we have
the following corollary :

Corollary 3.3. Let X be a countably locally weakly Lindelöf space. Then the set
{M |M is a σ-complete Boolean subalgebra of R(X) containg Z(X)# and s−1

M (X)
is basically disconnected}, when partially ordered by inclusion, becomes a complete
lattice. Moreover, σZ(X)# is the bottom element and Z(ΛX)# is the top element.
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