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Abstract
The intraclass correlation model has a long history of applications in several fields of research. Case deletion

diagnostic methods for the intraclass correlation model are proposed. Based on the likelihood equations, we de-
rive a formula for a case deletion diagnostic method which enables us to investigate the influence of observations
on the maximum likelihood estimates of the model parameters. Using the Taylor series expansion we develop an
approximation to the likelihood distance. Numerical examples are provided for illustration.
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1. Introduction

The intraclass correlation model also called equicorrelation model has a covariance matrix of equal
variances and equal covariances among all the component variables. Therefore every pair of vari-
ables for the intraclass correlation model has the same correlation coefficient called the intraclass
correlation coefficient, which was first introduced by Fisher (1921) in epidemiology to study familial
resemblance between siblings with respect to some characteristics such as weight, height and blood
pressure. Since then, the intraclass correlation coefficient has a lengthy history of applications in
wide areas of research. In genetic linkage studies to quantify a proportion of variance explained by
genetic factors, it is used to estimate the heritability of selected traits in animal and plant populations
(Visscher, 1998; Visscher et al., 2006). In psychology it measures the reliability of responses on one
or more sets of judges or assessors (Ebel, 1951). In sensitivity analysis it is used to measure the ef-
fectiveness of an experimental treatment (Bradley and Schumann, 1957). In genomics it assesses the
biological variation in DNA microarray analysis (Pellis et al., 2003). A test of fit for the intraclass
correlation model has been used for checking the validity of analysis-of-variance approach to repeated
measure design (Rencher, 1995). Olkin and Pratt (1958) studied unbiased estimation of the intraclass
correlation coefficient and some inferential results related with the intraclass correlation model can
be found in Srivastava (1965), Krishnaiah and Pathak (1967), Bhargava and Srivastava (1973). More
details about theory and methodology for inferences concerning the intraclass correlation coefficient
can be found in Donner (1986), Donner and Koval (1980).

In this work, we will propose case deletion diagnostics for the intraclass correlation model. In
Section 2, we will review maximum likelihood estimation of the model parameters, and provide some
convenient form of the likelihood equations which makes it easy to derive case deletions. In Section
3, we will develop a case deletion diagnostic method which investigate the influence of observations
on the maximum likelihood estimates of the model parameters. In Section 4, an approximation to the
likelihood distance is developed using the Taylor series expansion. Numerical examples are given for
illustration in Section 5. Concluding remarks are given in Section 6.
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2. Intraclass Correlation Model

We consider a random sample {x1, . . . , xn} from a p-variate normal distribution with mean vector µ
and covariance matrix Σ, in which the covariance matrix has a pattern of equal variances and equal
covariances. When we write as J the p×p matrix whose all elements are one, the intraclass correlation
model has the covariance matrix defined by

Σ = {(1 − ρ)I + ρJ}σ2,

where ρ is a real number and σ > 0. The determinant of Σ is given by

|Σ| = {1 + (p − 1)ρ}(1 − ρ)p−1σ2p.

If ρ , 1 or ρ , −(p − 1)−1, then the inverse of Σ exists and it is given by

Σ−1 =
[
I − ρ{1 + (p − 1)ρ}−1J

] {
σ2(1 − ρ)

}−1
.

More details about the equicorrelation matrix can be found in Rencher (1995) and Mardia et al.
(1979).

Based on the full sample of size, the sample mean vector and the sample covariance matrix are
given by

x̄ =
1
n

n∑
i=1

xi,

S = (si j) =
1
n

n∑
i=1

(xi − x̄) (xi − x̄)T

respectively. The maximum likelihood estimators of the model parameters are given by

µ̂ = x̄,

σ̂2 =
1
p

tr(S),

ρ̂σ̂2 =
2

p(p − 1)

∑
i< j

si j =
1

p(p − 1)

{
1T

p S1p − tr(S)
}
,

where 1p is the p × 1 vector whose all elements are one. Some materials about maximum likelihood
estimation for the intraclass correlation model can be found in Morrison (1990) and Rencher (1995).
The second identity for ρ̂σ̂2 enables us to easily derive a formula for case deletions, which will be
treated later.

3. Case Deletions

In what follows, the quantity with subscript (r) indicates that the corresponding quantity is computed
without the rth observation. The influence of xr on the estimate of each model parameter can be
investigated using µ̂ − µ̂(r), σ̂2 − σ̂2

(r) and ρ̂ − ρ̂(r), which will be derived in this section.



Case Deletion Diagnostics for Intraclass Correlation Model 255

Based on the reduced sample of size n − 1 without the rth observation xr, the sample mean vector
and the sample covariance matrix are given by

x̄(r) =
1

n − 1

n∑
i=1,i,r

xi =
n

n − 1
x̄ − 1

n − 1
xr,

S(r) =
1

n − 1

n∑
i=1,i,r

(
xi − x̄(r)

) (
xi − x̄(r)

)T
=

n
n − 1

S − n
(n − 1)2 (xr − x̄) (xr − x̄)T ,

respectively. For ease of presentations we let

cr = (xr − x̄)T (xr − x̄) ,

dr =
{
1T

p (xr − x̄)
}2
.

From the likelihood equations based on the full sample given in the previous section we can surmise
the form of the likelihood equations based on the reduced sample without the rth observation which
turn out to be

µ̂(r) = x̄(r),

σ̂2
(r) =

1
p

tr
(
S(r)

)
,

ρ̂(r)σ̂
2
(r) =

1
p(p − 1)

{
1T

p S(r)1p − tr
(
S(r)

)}
from which we easily get

µ̂ − µ̂(r) =
1

n − 1
(xr − x̄) ,

σ̂2 − σ̂2
(r) = −

1
n − 1

σ̂2 +
n

p(n − 1)2 cr,

(
ρ̂ − ρ̂(r)

)
σ̂2

(r) = −
n

p(n − 1)2

(
ρ̂ +

1
p − 1

)
cr +

1
p(p − 1)

n
(n − 1)2 dr.

From the second equation in the above, we can find σ̂2
(r) with which the third equation above yield a

formula for ρ̂ − ρ̂(r). Giraudeau et al. (1996) provided a formula for case deletion of the intraclass
correlation coefficient only, from which the form of our derivation based on the likelihood equations
themselves is different.

4. Measures based on the Likelihood

Let θ = (µT , σ2, ρ)T and l(θ) be the log-likelihood function of θ based on the full sample. The influence
of the rth observation on the likelihood can be measured using the likelihood distance (Cook and
Weisberg, 1982; Chatterjee and Hadi, 1988) defined by

LDr = 2
{
l(θ) − l

(
θ(r)

)}
.

The Taylor series expansion of l(θ(r)) about θ̂ approximates LDr by

LDr ≈
(
θ̂ − θ̂(r)

)T
l̈
(
θ̂
) (
θ̂ − θ̂(r)

)
, (4.1)
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where l̈(θ̂) = ∂2l(θ)/∂θ∂θT evaluated at θ = θ̂. More details about approximations by Taylor series
expansion can be found in Seber and Wild (1989).

The log-likelihood l(θ) can be written, ignoring unimportant constant, as

l(θ) = −n
2

[
log{1 + (p − 1)ρ} + (p − 1) log(1 − ρ) + p log

(
σ2

)]
− 1

2
1

σ2(1 − ρ)

n∑
i=1

(xi − µ)T (xi − µ) − 1
2

ρ

{1 + (p − 1)ρ}σ2(1 − ρ)

n∑
i=1

{
1T

p (xi − µ)
}2
.

In order to get an approximation to LDr given in (4.1), we need first to compute l̇(θ̂) = ∂l(θ)/∂θ whose
components are easily obtained as

∂l(θ)
∂µ
= n

[
I − ρ{1 + (p − 1)ρ}−1J

] {
σ2(1 − ρ)

}−1
(x̄ − µ),

∂l(θ)
∂(σ2)

= −np
2

1
σ2 +

1
2

1
σ4(1 − ρ)

n∑
i=1

(xi − µ)T (xi − µ)

− 1
2

ρ

{1 + (p − 1)ρ}σ4(1 − ρ)

n∑
i=1

{
1T

p (xi − µ)
}2
,

∂l(θ)
∂(ρ)

=
n
2

p(p − 1)ρ
{1 + (p − 1)ρ}(1 − ρ)

− 1
2

1
σ2(1 − ρ)2

n∑
i=1

(xi − µ)T (xi − µ)

+
1
2

1 + (p − 1)ρ2

{1 + (p − 1)ρ}2σ2(1 − ρ)2

n∑
i=1

{
1T

p (xi − µ)
}2
.

A little computation shows that the following identities hold
n∑

i=1

dr = ntr(S) + 2n
∑
i< j

si j = n1T
p S1p = n{1 + (p − 1)ρ̂}tr(S)

with whose aids we easily get the components of l̈(θ̂) as follows

∂2l(θ)
∂µ∂µT = −n

[
I − ρ̂ {1 + (p − 1)ρ̂}−1 J

] {
σ̂2(1 − ρ̂)

}−1
,

∂2l(θ)
∂µ∂(σ2)

=
∂2l(θ)
∂µ∂ρ

= 0,

∂2l(θ)
∂(σ2)2 = −

np
2

1
σ̂4 ,

∂2l(θ)
∂ρ∂(σ2)

=
np(p − 1)

2
ρ̂

{1 + (p − 1)ρ̂}(1 − ρ̂)σ̂2 ,

∂2l(θ)
∂ρ2 = −

np(p − 1)
2

1 + (p − 1)ρ̂2

(1 − ρ̂)2{1 + (p − 1)ρ̂}2 .

Together with the formula for case deletions obtained in Section 3, we are in a position to get an
approximation to LDr given in (4.1) given by

LDr ≈ A1 + A2 + A3 + A4 + A5,
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(a) Index plot of σ̂2 − σ̂2
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(b) Index plot for ρ̂ − ρ̂(r)

Figure 1: Case deletions for σ̂2 and ρ̂: cost data

where

A1 =
np

2(n − 1)2 +
n

(n − 1)3

nρ̂ − 1
1 − ρ̂

cr

σ̂2 −
n

(n − 1)2

ρ̂

(1 − ρ̂){1 + (p − 1)ρ̂}
dr

σ̂2 ,

A2 =
n3

2p(n − 1)4

c2
r

σ̂4 −
n2

(n − 1)3

ρ̂

1 − ρ̂
cr

σ̂2
(r)

+
n3

p(n − 1)4

ρ̂

1 − ρ̂
1
σ̂2

c2
r

σ̂2
(r)

,

A3 =
n2

(n − 1)3

ρ̂

1 − ρ̂
1

1 + (p − 1)ρ̂
dr

σ̂2
(r)

− n3

p(n − 1)4

ρ̂

1 − ρ̂
1

1 + (p − 1)ρ̂
1
σ̂2

crdr

σ̂2
(r)

,

A4 =
n3

2p(p − 1)(n − 1)4

1 + (p − 1)ρ̂2

(1 − ρ̂)2

c2
r

σ̂4
(r)

− n3

p(p − 1)(n − 1)4

1 + (p − 1)ρ̂2

(1 − ρ̂)2{1 + (p − 1)ρ̂}
crdr

σ̂4
(r)

,

A5 =
n3

2p(p − 1)(n − 1)4

1 + (p − 1)ρ̂2

(1 − ρ̂)2{1 + (p − 1)ρ̂}2
d2

r

σ̂4
(r)

.

Note that in computing an approximation to LDr, σ̂2
(r) can be rewritten as

σ̂2
(r) =

n
p(n − 1)2

{
p(n − 1)σ̂2 − cr

}
.

5. Numerical Examples

For illustration the intraclass correlation model is fitted to two data sets. First, we consider the cost
data with three variables (Johnson and Wichern, 1992, p.276) for illustrating the diagnostic method
developed in the previous sections. The maximum likelihood estimates for the model parameters
based on the full sample are µ̂ = (12.22, 8.11, 9.59)T , σ̂2 = 17.67 and ρ̂ = 0.37. We will consider case
deletions for σ̂2, ρ̂ and likelihood distances.

An index plot for the values σ̂2 − σ̂2
(r) is displayed in Figure 1(a), which shows that observations 9

and 21 are influential in estimating σ2. Deletion of each of observations 9 and 21 moves σ̂2 = 17.67
down to 14.51 and 14.90, respectively, and in this respect the role of deleting observations 9 is similar
to that of deleting observation 21. An index plot for the values ρ̂ − ρ̂(r) is included in Figure 1(b),
which shows that observations 9 and 21 are influential also in estimating ρ . The role of observations
9 and 21 for the case of ρ̂ is different from that for the case of σ̂2 because deletion of observation 9
increases ρ̂ = 0.37 to 0.48 while deletion of observation 21 decreases ρ̂ to 0.25.
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Figure 2: Index plot for LDr: cost data
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(a) Index plot of σ̂2 − σ̂2
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(b) Index plot for ρ̂ − ρ̂(r)

Figure 3: Case deletions for σ̂2 and ρ̂: simulated data

Figure 2 shows an index plot for the values of LDr, from which we can see that deletion of
observations 9 has the largest influence on the likelihood and observation 21 is the next one. The
influence of other observations except for these two observations on the likelihood may be neglected.
Observations 9 and 21 stand out in all of three displays.

Next, the intraclass correlation model is fitted to the simulated data with 23 observations on two
variables (Kim, 2000) in which observations 21, 22, 23 have large influence on the variance and the
correlation. The maximum likelihood estimates for the model parameters based on the full sample are
µ̂ = (1.00, 0.19)T , σ̂2 = 25.28 and ρ̂ = 0.61.

An index plot for the values σ̂2 − σ̂2
(r) in Figure 3(a) shows that observation 22 is remarkably

influential in estimating σ2 compared with the others. Deletion of observations 22 moves σ̂2 = 25.28
down to 16.65. An index plot for the values ρ̂ − ρ̂(r) in Figure 3(b) shows that observations 21, 22, 23
are influential in estimating ρ. Figure 4 shows an index plot for the values of LDr, from which we can
see that deletion of observations 22 has the largest influence on the likelihood and observation 23, 21
are the next.

6. Concluding Remarks

A direct derivation of Cook’s distance for θ̂ − θ̂(r) is not feasible because the covariance matrix of
θ̂ is not at present available. The covariance matrix of the asymptotic distribution of the maximum
likelihood estimator θ̂ is just −{E(∂2l(θ)/∂θ∂θT }−1. Hence if ∂2l(θ)/∂θ∂θT is a good approximation to
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Figure 4: Index plot for LDr: simulated data

E(∂2l(θ)/∂θ∂θT ) at θ = θ̂, then LDr in ( 4.1) can be used as an approximation to Cook’s distance for
θ̂ − θ̂(r).

Though this work centers on a single case deletion, multiple case deletions can be performed,
which may be further work. Case deletion diagnostic suffers from so called masking and swamping
effects, which may be avoided by a robust method that is also a further work.
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