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AREA OF TRIANGLES ASSOCIATED WITH A CURVE

Dong-Soo Kim and Kyu-Chul Shim

Abstract. It is well known that the area U of the triangle formed by
three tangents to a parabola X is half of the area T of the triangle formed
by joining their points of contact. In this article, we study some properties
of U and T for strictly convex plane curves. As a result, we establish a
characterization for parabolas.

1. Introduction

Let X = X(s) be a unit speed smooth curve in the plane R
2 with nonvan-

ishing curvature, and let A = X(s), Ai = X(s+ hi), i = 1, 2, be three distinct
neighboring points on X . Denote by ℓ, ℓ1, ℓ2 the tangent lines passing through
the points A,A1, A2 and by B,B1, B2 the intersection points ℓ1 ∩ ℓ2, ℓ ∩ ℓ1,
ℓ ∩ ℓ2, respectively. It is well known that the area U(s, h1, h2) = | △ BB1B2|
of the triangle formed by three tangents to a parabola is half of the area
T (s, h1, h2) = | △ AA1A2| of the triangle formed by joining their points of
contact ([1]).

The present article studies whether this property exhaustively characterizes
parabolas.

Usually, a regular plane curve X : I → R
2 defined on an open interval is

called convex if, for all t ∈ I, the trace X(I) lies entirely on one side of the
closed half-plane determined by the tangent line at X(t) ([2]).

Hereafter, we will say that a simple convex curveX in the plane R2 is strictly
convex if the curve is smooth (that is, of class C(3)) and is of positive curvature
κ with respect to the unit normal N pointing to the convex side. Hence, in
this case we have κ(s) = 〈X ′′(s), N(X(s))〉 > 0, where X(s) is an arclength
parametrization of X .

For a smooth function f : I → R defined on an open interval, we will also say
that f is strictly convex if the graph of f has positive curvature κ with respect
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to the upward unit normal N . This condition is equivalent to the positivity of
f ′′(x) on I.

Suppose that X is a strictly convex curve in the plane R
2 with the unit

normal N pointing to the convex side. For a fixed point P = A ∈ X , and
for a sufficiently small h > 0, consider the line m passing through P + hN(P )
which is parallel to the tangent ℓ of X at P . Let us denote by A1 and A2 the
points where the line m intersects the curve X . We denote by LP (h) the length
|A1A2| of the chord A1A2.

Let us denote by ℓ1, ℓ2 the tangent lines passing through the points A1, A2

and by B,B1, B2 the intersection points ℓ1 ∩ ℓ2, ℓ ∩ ℓ1, ℓ ∩ ℓ2, respectively.
We denote by TP (h), UP (h) the area | △ AA1A2| , | △ BB1B2|, of triangles,
respectively. Then, obviously we have TP (h) =

h
2LP (h).

In this paper, first of all, in Section 2 we prove the following:

Theorem 1. Let X denote a strictly convex C(3) curve in the plane R
2. Then

we have

(1.1) lim
h→0

TP (h)

h
√
h

=

√
2

√

κ(P )

and

(1.2) lim
h→0

UP (h)

h
√
h

=

√
2

2
√

κ(P )
.

Next in Section 3, using Theorem 1 we characterize parabolas as follows.

Theorem 2. Let X = X(s) denote a strictly convex C(3) curve in the plane R2.

Suppose that for all s and sufficiently small hi, i = 1, 2, the curve X satisfies

(1.3) U(s, h1, h2) = λ(s)T (s, h1, h2).

Then, we have λ(s) = 1
2 and X is an open part of a parabola.

In [8], Krawczyk showed that for a strictly convex C(4) curve X = X(s) in
the plane R

2, the following holds:

(1.4) lim
h1,h2→0

T (s, h1, h2)

U(s, h1, h2)
= 2.

His application of (1.4) states that if a strictly convex C(4) curve X = X(s) in
the plane R

2 satisfies (1.3), then λ(s) = 1
2 and X is an open part of the graph

of a quadratic polynomial.
But, for example, consider a function f(x) given by

(3.14) y =
2
√
acx+ 1−

√

4
√
acx+ 1

2c2
,

where a, c > 0. Then, the function f is defined on I = (− 1
4
√
ac
,∞). Its graph

X is strictly convex and satisfies (1.3) with λ = 1
2 . Note that X is not the
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graph of a quadratic polynomial, but an open part of the parabola given in
(3.16) in Section 3.

In [6], the first author and Y. H. Kim established five characterizations
of parabolas, which are the converses of well-known properties of parabolas
originally due to Archimedes ([10]). In [4] and [5], they also proved the higher
dimensional analogues of some results in [6].

For a few characterizations of parabolas or conic sections by some properties
of tangent lines, see [3] and [7].

Among the graphs of functions, B. Richmond and T. Richmond established
a dozen characterizations of parabolas using elementary techniques ([9]). In
[9], parabola means the graph of a quadratic polynomial in one variable.

Finally, we pose a question as follows.

Question 3. LetX be a strictly convexC(3) plane curve. Suppose that for each
P ∈ X there exists a positive number ǫ = ǫ(P ) > 0 such that UP (h) = TP (h)/2
for all h with 0 < h < ǫ(P ). Then, is it an open part of a parabola?

Throughout this article, all curves are of class C(3) and connected, unless
otherwise mentioned.

2. Preliminaries and Theorem 1

In order to prove Theorem 1, we need the following lemma ([6]).

Lemma 4. Suppose that X is a strictly convex C(3) curve in the plane R
2 with

the unit normal N pointing to the convex side. Then we have

(2.1) lim
h→0

1√
h
LP (h) =

2
√
2

√

κ(P )
,

where κ(P ) is the curvature of X at P with respect to the unit normal N .

First of all, we give a proof of (1.1) in Theorem 1. Since TP (h) =
h
2LP (h),

it follows from Lemma 4 that the following holds:

(1.1) lim
h→0

1

h
√
h
TP (h) =

√
2

√

κ(P )
.

In order to prove (1.2) in Theorem 1, we fix an arbitrary point P on X .
Then, we may take a coordinate system (x, y) of R2: P is taken to be the
origin (0, 0) and x-axis is the tangent line ℓ of X at P . Furthermore, we may
regard X to be locally the graph of a non-negative strictly convex function
f : R → R with f(0) = f ′(0) = 0. Then N is the upward unit normal.

Since the curve X is of class C(3), the Taylor’s formula of f(x) is given by

(2.2) f(x) = ax2 + g(x),

where 2a = f ′′(0) and g(x) is an O(|x|3) function. From κ(P ) = f ′′(0) > 0, we
see that a is positive.
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For a sufficiently small h > 0, we denote by A1(s, f(s)) and A2(t, f(t)) the
points where the line m : y = h meets the curve X with s < 0 < t. Then
f(s) = f(t) = h and we get B1(s− h/f ′(s), 0), B2(t−h/f ′(t), 0) and B(x0, y0)
with

(2.3) x0 =
tf ′(t)− sf ′(s)

f ′(t)− f ′(s)

and

(2.4) y0 =
(t− s)f ′(t)f ′(s) + h(f ′(t)− f ′(s))

f ′(t)− f ′(s)
.

Noting that LP (h) = t− s, one obtains

(2.5)

2UP (h) = {t− s− h

f ′(t)
+

h

f ′(s)
}(−y0)

= h2 (f
′(t)− f ′(s))

−f ′(s)f ′(t)
− 2hLP (h) +

−f ′(s)f ′(t)

f ′(t)− f ′(s)
LP (h)

2.

It follows from (2.5) that

(2.6) 2
UP (h)

h
√
h

= αP (h)− 2
LP (h)√

h
+

1

αP (h)
(
LP (h)√

h
)2,

where we denote

(2.7) αP (h) =
√
h
(f ′(t)− f ′(s))

−f ′(s)f ′(t)
.

Finally, we prove a lemma, which together with (2.6) and Lemma 4, com-
pletes the proof of (2) in Theorem 1.

Lemma 5. We have the following.

(2.8) lim
h→0

αP (h) =

√
2

√

κ(P )
.

Proof. Note that

(2.9) αP (h) =
βP (h)

γP (h)
,

where we denote

(2.10) βP (h) =
f ′(t)− f ′(s)

t− s

and

(2.11) γP (h) =
−f ′(s)f ′(t)√

h(t− s)
.

Applying mean value theorem to the derivative f ′(x) of f(x) shows that as
h tends to 0, βP (h) goes to f ′′(0) = κ(P ). To get the limit of γP (h), we put

(2.12) δP (h) =
f ′(s)f ′(t)

st
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and

(2.13) ηP (h) =
−st√
h(t− s)

.

Then, we have

(2.14) γP (h) = δP (h)ηP (h).

Note that

(2.15) lim
h→0

δP (h) = κ(P )2.

If we use LP (h) = t− s, ηP (h) can be written as

(2.16) ηP (h) = (−st

h
)/(

LP (h)√
h

)

and the numerator of (2.16) can be decomposed as

(2.17) −st

h
= (

LP (h)√
h

− t√
h
)

t√
h
.

Now, to obtain the limit of t√
h
, we use (2.2). Recalling that κ(P ) = f ′′(0) =

2a, we have

(2.18)
t√
h
=

t
√

at2 + g(t)
.

Since g(x) is an O(|x|3) function, (2.18) implies that limh→0 t/
√
h = 1/

√
a.

Hence, together with (2.17), Lemma 4 shows that limh→0(−st)/h = 1/a, and
hence from (2.16) we get

(2.19) lim
h→0

ηP (h) =
1

2
√
a
.

Thus, it follows from (2.14) and (2.15) that

(2.20) lim
h→0

γP (h) = 2a
√
a.

Using κ(P ) = 2a, together with (2.9) and (2.10), (2.20) completes the proof
of Lemma 5. �

3. Proof of Theorem 2

In this section, we prove Theorem 2.
Suppose that X = X(s) denote a strictly convex C(3) curve in the plane R

2

which satisfies for all s and sufficiently small hi, i = 1, 2,

(1.3) U(s, h1, h2) = λ(s)T (s, h1, h2).

Then, in particular, for all P = X(s) and sufficiently small h > 0 the curve X
satisfies

(3.1) UP (h) = λ(P )TP (h).

Hence, Theorem 1 implies that λ(P ) = 1
2 .
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In order to prove the remaining part of Theorem 2, first, we fix an arbitrary
point A on X . As in Section 1, we take a coordinate system (x, y) of R

2:
A is taken to be the origin (0, 0) and x-axis is the tangent line ℓ of X at A.
Furthermore, we may regardX to be locally the graph of a non-negative strictly
convex function f : R → R with f(0) = f ′(0) = 0 and 2a = f ′′(0) > 0.

For sufficiently small |s| and |t| with 0 < s < t or t < s < 0, we let
A1 = (s, f(s)), A2 = (t, f(t)) be two neighboring points of A on X . Then, the
area T (s, t) of the triangle △AA1A2 is given by

(3.2) 2ǫT (s, t) = (sf(t)− tf(s)),

where ǫ = 1 if 0 < s < t and ǫ = −1 if t < s < 0.
Denote by ℓ, ℓ1, ℓ2 the tangent lines passing through the points A,A1, A2

and by B,B1, B2 the intersection points ℓ1∩ℓ2, ℓ∩ℓ1, ℓ∩ℓ2, respectively. Then
we have B1(s− f(s)/f ′(s), 0), B2(t− f(t)/f ′(t), 0) and B(x0, y0) with

(3.3) y0 =
(t− s)f ′(t)f ′(s) + f(s)f ′(t)− f ′(s)f(t)

f ′(t)− f ′(s)
.

Hence the area U(s, t) of the triangle △BB1B2 is given by

(3.4)

2ǫU(s, t) = {t− s− f(t)

f ′(t)
+

f(s)

f ′(s)
}(y0)

=
{(t− s)f ′(t)f ′(s) + f(s)f ′(t)− f ′(s)f(t)}2

f ′(s)f ′(t)(f ′(t)− f ′(s))
.

Second, we prove:

Lemma 6. The function f satisfies the following:

(3.5) f(t)f ′(t)2 = 4a(tf ′(t)− f(t))2,

where a is given by f ′′(0) = 2a.

Proof. Since the curve X satisfies (1.3) with λ = 1/2, we get 2U(s, t) = T (s, t).
By letting s → 0, from (3.2) we get

(3.6) ǫ lim
s→0

T (s, t)

s
=

f(t)

2
,

where we use f ′(0) = 0. From (3.4) we also get

(3.7)

2ǫ lim
s→0

U(s, t)

s
=

{f ′′(0)tf ′(t)− f ′′(0)f(t)}2
f ′′(0)f ′(t)2

= 2a
{tf ′(t)− f(t)}2

f ′(t)2
,

where we use f ′(0) = 0 and f ′′(0) = 2a > 0. Together with (3.6), (3.7)
completes the proof. �

Third, we prove:
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Lemma 7. The function f satisfies the following:

(3.8) 2f(t)2f ′′(t) = f ′(t)2{tf ′(t)− f(t)}.

Proof. By letting s → t, we get from (3.2)

(3.9)
ǫ lim
s→t

T (s, t)

s− t
=

1

2
lim
s→t

sf(t)− tf(s)

s− t

=
1

2
(f(t)− tf ′(t)).

On the other hand, from (3.4) we get

(3.10)

2ǫ lim
s→t

U(s, t)

s− t
= lim

s→t

{(t− s)f ′(t)f ′(s) + f(s)f ′(t)− f ′(s)f(t)}2
(s− t)f ′(s)f ′(t)(f ′(t)− f ′(s))

= −f(t)2f ′′(t)

f ′(t)2
.

Since T = 2U , together with (3.9), (3.10) completes the proof. �

By eliminating tf ′(t)− f(t) from (3.5) and (3.8), we get

(3.11) f ′′(t) =
1

4
√
a

f ′(t)3

f(t)3/2
.

Letting y = f(t), a standard method of ordinary differential equations using
the substitution w = dy/dt and y′′(t) = w(dw/dy) leads to

(3.12) dt = (
1

2
√
ay

+ c)dy,

where c is a constant. Since f(0) = 0, we obtain from (3.12)

(3.13) t =
1√
a
(
√
y + cy).

After replacing t by x, we have for y = f(x)

(3.14) y =

{

2
√
acx+1−

√
4
√
acx+1

2c2 , if c 6= 0,

ax2, if c = 0.

Note that

(3.15) f(0) = f ′(0) = 0, f ′′(0) = 2a and f ′′′(0) = −12
√
aac or 0.

It follows from (3.14) that the curve X around an arbitrary point A is an open
part of the parabola defined by

(3.16) ax2 − 2
√
acxy + c2y2 − y = 0.

Finally using (3.15), in the same manner as in [6], we can show that the
curve X is globally an open part of a parabola. This completes the proof of
Theorem 2.
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4. Corollaries and examples

In this section, we give some corollaries and examples.
Suppose that X = X(s) is a strictly convex C(3) curve in the plane R2 which

satisfies for all s and sufficiently small hi, i = 1, 2,

(4.1) U(s, h1, h2) = λ(s)T (s, h1, h2)
µ(s),

where λ(s) and µ(s) are some functions. Then, in particular, for all P = X(s)
and sufficiently small h > 0 the curve X satisfies

(4.2) UP (h) = λ(P )TP (h)
µ(P ).

Using Theorem 1, by letting h → 0 we see that µ(P ) = 1. Hence, Theorem 1
again implies that λ(P ) = 1

2 .
Thus, from Theorem 2 we get:

Corollary 8. Let X denote a strictly convex curve in the plane R
2. Then, the

following are equivalent.

1) X satisfies (4.1) for some functions λ(s) and µ(s).
2) X satisfies (4.1) with λ = 1

2 and µ = 1 .

3) X is an open part of a parabola.

Finally, we give an example of a convex curve which satisfies

(1.5) UP (h) =
1

2
TP (h)

for sufficiently small h > 0 at every point P ∈ X , but it is not a parabola.
Note that the example is not of class C(2), and hence it is not strictly convex
either.

Example 9. Consider the graph X of a function f : R → R which is given by
for some positive distinct constants a and b

(4.3) f(x) =

{

ax2, if x < 0,

bx2, if x ≥ 0.

It is straightforward to show that if P is the origin, then for all h we have

(4.4) UP (h) =
1

2
TP (h).

Hence X satisfies UP (h) = TP (h)/2 at the origin for all h > 0. If P ∈ X is
not the origin, then there exists a positive number ε(P ) such that for every
positive number h with h < ε(P ), X satisfies UP (h) = TP (h)/2.

Thus, X satisfies UP (h) = TP (h)/2 for sufficiently small h > 0 at every
point P ∈ X . But it is not a parabola.
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